Partial summation formula for two indexes?











up vote
0
down vote

favorite
1












We know that partial summation states that given two sequences $(alpha_n), (beta_n)$, we can write



$$sum_{n=1}^palpha_nbeta_n=beta_nA_p+sum_{n=1}^{p-1}(beta_n-beta_{n+1})A_n$$



where $A_p=sum_{n=1}^{p}alpha_n$.



Is there a version of this formula for sequences $(alpha_n^m)$ with two indexes?










share|cite|improve this question




















  • 1




    Do you sum over $m$ as well?
    – Andrei
    Nov 16 at 20:05










  • Yes, I'm thinking about $sum_{n,m}alpha_n^mbeta_n^m$
    – Mark_Hoffman
    Nov 16 at 21:38

















up vote
0
down vote

favorite
1












We know that partial summation states that given two sequences $(alpha_n), (beta_n)$, we can write



$$sum_{n=1}^palpha_nbeta_n=beta_nA_p+sum_{n=1}^{p-1}(beta_n-beta_{n+1})A_n$$



where $A_p=sum_{n=1}^{p}alpha_n$.



Is there a version of this formula for sequences $(alpha_n^m)$ with two indexes?










share|cite|improve this question




















  • 1




    Do you sum over $m$ as well?
    – Andrei
    Nov 16 at 20:05










  • Yes, I'm thinking about $sum_{n,m}alpha_n^mbeta_n^m$
    – Mark_Hoffman
    Nov 16 at 21:38















up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





We know that partial summation states that given two sequences $(alpha_n), (beta_n)$, we can write



$$sum_{n=1}^palpha_nbeta_n=beta_nA_p+sum_{n=1}^{p-1}(beta_n-beta_{n+1})A_n$$



where $A_p=sum_{n=1}^{p}alpha_n$.



Is there a version of this formula for sequences $(alpha_n^m)$ with two indexes?










share|cite|improve this question















We know that partial summation states that given two sequences $(alpha_n), (beta_n)$, we can write



$$sum_{n=1}^palpha_nbeta_n=beta_nA_p+sum_{n=1}^{p-1}(beta_n-beta_{n+1})A_n$$



where $A_p=sum_{n=1}^{p}alpha_n$.



Is there a version of this formula for sequences $(alpha_n^m)$ with two indexes?







sequences-and-series analysis summation-by-parts






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 16 at 21:37

























asked Nov 16 at 20:00









Mark_Hoffman

663515




663515








  • 1




    Do you sum over $m$ as well?
    – Andrei
    Nov 16 at 20:05










  • Yes, I'm thinking about $sum_{n,m}alpha_n^mbeta_n^m$
    – Mark_Hoffman
    Nov 16 at 21:38
















  • 1




    Do you sum over $m$ as well?
    – Andrei
    Nov 16 at 20:05










  • Yes, I'm thinking about $sum_{n,m}alpha_n^mbeta_n^m$
    – Mark_Hoffman
    Nov 16 at 21:38










1




1




Do you sum over $m$ as well?
– Andrei
Nov 16 at 20:05




Do you sum over $m$ as well?
– Andrei
Nov 16 at 20:05












Yes, I'm thinking about $sum_{n,m}alpha_n^mbeta_n^m$
– Mark_Hoffman
Nov 16 at 21:38






Yes, I'm thinking about $sum_{n,m}alpha_n^mbeta_n^m$
– Mark_Hoffman
Nov 16 at 21:38

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001583%2fpartial-summation-formula-for-two-indexes%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001583%2fpartial-summation-formula-for-two-indexes%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix