Posts

Showing posts from February 23, 2019

Fundamental groups of the configuration spaces of all triangles and right triangles

Image
1 2 $begingroup$ This is a question from a past comprehensive exam: Consider triangles in the plane, with vertices given by non-colinear points as usual. The space $T$ of all plane triangles can be given a natural quotient topology: $T$ is the quotient of an open subset of $mathbb{R}^6=(mathbb{R}^2)^3$ by the action of the symmetric group $S_3$ permuting the vertices of a triangle. Let $R$ be the space of all right triangles in the plane. Let $i:Rto T$ be the inclusion map. Is the map $i_*:pi_1(R)to pi_1(T)$ surjective? I do not know the answer and I only have a very vague picture of $T$ and $R$ as some fiber bundles. I don't really know where to start when faced with such problems. Any hint will be appreciated. algebraic-topology fundamental-groups...

Usina (bairro do Rio de Janeiro)

Image
Bairros do Rio de Janeiro Centro Bairro Imperial de São Cristóvão Benfica Caju Catumbi Centro Cidade Nova Estácio Gamboa Lapa Mangueira Paquetá Rio Comprido Santa Teresa Santo Cristo Saúde Vasco da Gama Norte Abolição Acari Água Santa Aldeia Campista Alto da Boa Vista Anchieta Andaraí Bancários Barros Filho Bento Ribeiro Bonsucesso Brás de Pina Cachambi Cacuia Campinho Cascadura Cavalcante Cidade Universitária Cocotá Coelho Neto Colégio Complexo do Alemão Cordovil Costa Barros Del Castilho Encantado Engenheiro Leal Engenho da Rainha Engenho de Dentro Engenho Novo Freguesia Galeão Grajaú Guadalupe Higienópolis Honório Gurgel Inhaúma Irajá Jacaré Jacarezinho Jardim América Jardim Carioca Jardim Guanabara Lins de Vasconcelos Madureira Mangueira Manguinhos Maracanã Maré * Marechal Hermes Maria da Graça Méier Moneró Olaria Oswaldo Cruz Parada de Lucas Parque Anchie...