Representing an integral as a finite sum












4












$begingroup$



Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$




I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.



If you guys have any idea, I would be happy to hear them. Thanks!










share|cite|improve this question









$endgroup$

















    4












    $begingroup$



    Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$




    I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.



    If you guys have any idea, I would be happy to hear them. Thanks!










    share|cite|improve this question









    $endgroup$















      4












      4








      4


      3



      $begingroup$



      Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$




      I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.



      If you guys have any idea, I would be happy to hear them. Thanks!










      share|cite|improve this question









      $endgroup$





      Question: If $a$ is in an arbitrary commensurable ratio to $pi$, that is $a=tfrac {mpi}n$, then if $m+n$ is odd$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{n-1}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}{2n}right)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}{2n}right)}{mathrm dx}right]$$and when $m+n$ is even$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=frac 12sumlimits_{i=1}^{(n-1)/2}(-1)^{i-1}sin ialeft[frac {mathrm dGammaleft(frac {x+n+i}nright)}{mathrm dx}-frac {mathrm dGammaleft(frac {x+i}nright)}{mathrm dx}right]$$




      I’m just having difficulty finding out where to start. Since the integral equals an infinite sum, it might be wise to start off with a taylor expansion of some sort. However, which function to expand I’m not very sure.



      If you guys have any idea, I would be happy to hear them. Thanks!







      real-analysis calculus integration definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 17 '18 at 5:07









      CrescendoCrescendo

      2,2951625




      2,2951625






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
          $$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
            $endgroup$
            – Frank W.
            Dec 17 '18 at 16:13










          • $begingroup$
            @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
            $endgroup$
            – Crescendo
            Dec 18 '18 at 5:21












          • $begingroup$
            Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
            $endgroup$
            – Nosrati
            Dec 18 '18 at 5:41













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043549%2frepresenting-an-integral-as-a-finite-sum%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
          $$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
            $endgroup$
            – Frank W.
            Dec 17 '18 at 16:13










          • $begingroup$
            @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
            $endgroup$
            – Crescendo
            Dec 18 '18 at 5:21












          • $begingroup$
            Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
            $endgroup$
            – Nosrati
            Dec 18 '18 at 5:41


















          3












          $begingroup$

          Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
          $$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
            $endgroup$
            – Frank W.
            Dec 17 '18 at 16:13










          • $begingroup$
            @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
            $endgroup$
            – Crescendo
            Dec 18 '18 at 5:21












          • $begingroup$
            Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
            $endgroup$
            – Nosrati
            Dec 18 '18 at 5:41
















          3












          3








          3





          $begingroup$

          Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
          $$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$






          share|cite|improve this answer









          $endgroup$



          Hint: Expand the $dfrac{sin a}{1+2ycos a+y^2}$ and show
          $$frac {y}{1+2ycos a+y^2}=sum_{ngeq1}(-1)^{n-1}dfrac{sin na}{sin a}y^n$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 17 '18 at 5:35









          NosratiNosrati

          26.5k62354




          26.5k62354












          • $begingroup$
            Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
            $endgroup$
            – Frank W.
            Dec 17 '18 at 16:13










          • $begingroup$
            @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
            $endgroup$
            – Crescendo
            Dec 18 '18 at 5:21












          • $begingroup$
            Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
            $endgroup$
            – Nosrati
            Dec 18 '18 at 5:41




















          • $begingroup$
            Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
            $endgroup$
            – Frank W.
            Dec 17 '18 at 16:13










          • $begingroup$
            @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
            $endgroup$
            – Crescendo
            Dec 18 '18 at 5:21












          • $begingroup$
            Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
            $endgroup$
            – Nosrati
            Dec 18 '18 at 5:41


















          $begingroup$
          Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
          $endgroup$
          – Frank W.
          Dec 17 '18 at 16:13




          $begingroup$
          Is the last line supposed to say$$frac 1{1+2ycos a+y^2}=sumlimits_{ngeq1}(-1)^{n-1}frac {sin na}{sin a}y^n$$
          $endgroup$
          – Frank W.
          Dec 17 '18 at 16:13












          $begingroup$
          @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
          $endgroup$
          – Crescendo
          Dec 18 '18 at 5:21






          $begingroup$
          @Nosrati Okay I've replaced $2cos a$ with $e^{ia}+e^{-ia}$. Then, I factored the denominator and expanded to get the $a_n$ term as$$a_n=sumlimits_{k=0}^{n}(-1)^k e^{(n-2k)ia}=frac {sin a(n+1)}{sin a}$$Therefore, the sum equals$$intlimits_0^1mathrm dy,frac {y^xsin a}{1+2ycos a+y^2}=sumlimits_{ngeq1}frac {(-1)^{n-1}sin an}{x+n}$$I can see that the two are very close, but how do I arrive at the gamma functions? Additionally, how does the infinite sum which we have become finite?
          $endgroup$
          – Crescendo
          Dec 18 '18 at 5:21














          $begingroup$
          Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
          $endgroup$
          – Nosrati
          Dec 18 '18 at 5:41






          $begingroup$
          Additionally, $sum_{i=1}^infty=sum_{i=1}^{n}+sum_{i=n+1}^{2n}+cdots=sum_{n=1}^{infty}sum_{i=1}^{n}$
          $endgroup$
          – Nosrati
          Dec 18 '18 at 5:41




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043549%2frepresenting-an-integral-as-a-finite-sum%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How do I know what Microsoft account the skydrive app is syncing to?

          When does type information flow backwards in C++?

          Grease: Live!