What is the solution for these two equalities $ x = lambda(Ax) $ and $ x^TAx=1 $?
$begingroup$
Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.
What is the solution for $x$ when $lambda >0$
$$ x = lambda(Ax) $$ and $$ x^TAx=1 $$
linear-algebra matrices matrix-calculus symmetric-matrices
$endgroup$
add a comment |
$begingroup$
Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.
What is the solution for $x$ when $lambda >0$
$$ x = lambda(Ax) $$ and $$ x^TAx=1 $$
linear-algebra matrices matrix-calculus symmetric-matrices
$endgroup$
add a comment |
$begingroup$
Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.
What is the solution for $x$ when $lambda >0$
$$ x = lambda(Ax) $$ and $$ x^TAx=1 $$
linear-algebra matrices matrix-calculus symmetric-matrices
$endgroup$
Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.
What is the solution for $x$ when $lambda >0$
$$ x = lambda(Ax) $$ and $$ x^TAx=1 $$
linear-algebra matrices matrix-calculus symmetric-matrices
linear-algebra matrices matrix-calculus symmetric-matrices
asked Dec 17 '18 at 5:06
SepideSepide
3308
3308
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that $x=lambda Ax$, then
$$lambda Ax-x=0$$
$$lambda(Ax-lambda^{-1}x)=0$$
$$(A-lambda^{-1}I)x=0$$
So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
$$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$
So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
$$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043548%2fwhat-is-the-solution-for-these-two-equalities-x-lambdaax-and-xtax-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $x=lambda Ax$, then
$$lambda Ax-x=0$$
$$lambda(Ax-lambda^{-1}x)=0$$
$$(A-lambda^{-1}I)x=0$$
So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
$$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$
So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
$$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$
$endgroup$
add a comment |
$begingroup$
Suppose that $x=lambda Ax$, then
$$lambda Ax-x=0$$
$$lambda(Ax-lambda^{-1}x)=0$$
$$(A-lambda^{-1}I)x=0$$
So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
$$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$
So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
$$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$
$endgroup$
add a comment |
$begingroup$
Suppose that $x=lambda Ax$, then
$$lambda Ax-x=0$$
$$lambda(Ax-lambda^{-1}x)=0$$
$$(A-lambda^{-1}I)x=0$$
So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
$$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$
So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
$$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$
$endgroup$
Suppose that $x=lambda Ax$, then
$$lambda Ax-x=0$$
$$lambda(Ax-lambda^{-1}x)=0$$
$$(A-lambda^{-1}I)x=0$$
So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
$$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$
So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
$$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$
answered Dec 17 '18 at 9:47
clmundergradclmundergrad
1916
1916
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043548%2fwhat-is-the-solution-for-these-two-equalities-x-lambdaax-and-xtax-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown