What is the solution for these two equalities $ x = lambda(Ax) $ and $ x^TAx=1 $?












4












$begingroup$


Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.



What is the solution for $x$ when $lambda >0$



$$ x = lambda(Ax) $$ and $$ x^TAx=1 $$










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.



    What is the solution for $x$ when $lambda >0$



    $$ x = lambda(Ax) $$ and $$ x^TAx=1 $$










    share|cite|improve this question









    $endgroup$















      4












      4








      4


      0



      $begingroup$


      Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.



      What is the solution for $x$ when $lambda >0$



      $$ x = lambda(Ax) $$ and $$ x^TAx=1 $$










      share|cite|improve this question









      $endgroup$




      Let $A in mathbb{R}^{4 times 4}$ be a symmetric matrix with two distinct positive eigenvalues and other eigenvalues of $A$ are nonpositive.



      What is the solution for $x$ when $lambda >0$



      $$ x = lambda(Ax) $$ and $$ x^TAx=1 $$







      linear-algebra matrices matrix-calculus symmetric-matrices






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 17 '18 at 5:06









      SepideSepide

      3308




      3308






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Suppose that $x=lambda Ax$, then
          $$lambda Ax-x=0$$
          $$lambda(Ax-lambda^{-1}x)=0$$
          $$(A-lambda^{-1}I)x=0$$
          So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
          $$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$



          So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
          with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
          $$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043548%2fwhat-is-the-solution-for-these-two-equalities-x-lambdaax-and-xtax-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Suppose that $x=lambda Ax$, then
            $$lambda Ax-x=0$$
            $$lambda(Ax-lambda^{-1}x)=0$$
            $$(A-lambda^{-1}I)x=0$$
            So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
            $$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$



            So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
            with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
            $$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Suppose that $x=lambda Ax$, then
              $$lambda Ax-x=0$$
              $$lambda(Ax-lambda^{-1}x)=0$$
              $$(A-lambda^{-1}I)x=0$$
              So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
              $$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$



              So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
              with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
              $$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Suppose that $x=lambda Ax$, then
                $$lambda Ax-x=0$$
                $$lambda(Ax-lambda^{-1}x)=0$$
                $$(A-lambda^{-1}I)x=0$$
                So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
                $$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$



                So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
                with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
                $$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$






                share|cite|improve this answer









                $endgroup$



                Suppose that $x=lambda Ax$, then
                $$lambda Ax-x=0$$
                $$lambda(Ax-lambda^{-1}x)=0$$
                $$(A-lambda^{-1}I)x=0$$
                So $x$ is an eigenvector with eigenvalue $lambda^{-1}>0$. Moreover,
                $$x^T Ax=lambda^{-1}x^T x=1 Rightarrow x^T x=||x||^2=lambda$$



                So any solutions, $x$, must be eigenvectors with (positive) eigenvalue $lambda^{-1}$ and norm $||x||=sqrt{lambda}$. If the unit eigenvectors of $A$ are $v_1$ and $v_2$
                with the corresponding positve eigenvalues $mu_1$ and $mu_2$, then the solutions to your system of equations are:
                $$(x,lambda) in {(sqrt{mu_1^{-1}}v_1,mu_1^{-1}),(sqrt{mu_2^{-1}}v_1,mu_2^{-1}) }$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 17 '18 at 9:47









                clmundergradclmundergrad

                1916




                1916






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043548%2fwhat-is-the-solution-for-these-two-equalities-x-lambdaax-and-xtax-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix