Which of the following statements are true..?
$begingroup$
Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?
$1)$$lim_{|z|to infty}|f(z)|=infty$
$2)$$lim_{|z|to infty}|g(z)|=infty$
$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
My attempt : option $1$ is only correct option
option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$
option $3$ and $4$ are contradiction of lioville thorem so it will be false
is its True ??
Any hints/solution will be appreciated
thanks u
complex-analysis
$endgroup$
add a comment |
$begingroup$
Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?
$1)$$lim_{|z|to infty}|f(z)|=infty$
$2)$$lim_{|z|to infty}|g(z)|=infty$
$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
My attempt : option $1$ is only correct option
option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$
option $3$ and $4$ are contradiction of lioville thorem so it will be false
is its True ??
Any hints/solution will be appreciated
thanks u
complex-analysis
$endgroup$
$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58
1
$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59
2
$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12
$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45
add a comment |
$begingroup$
Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?
$1)$$lim_{|z|to infty}|f(z)|=infty$
$2)$$lim_{|z|to infty}|g(z)|=infty$
$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
My attempt : option $1$ is only correct option
option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$
option $3$ and $4$ are contradiction of lioville thorem so it will be false
is its True ??
Any hints/solution will be appreciated
thanks u
complex-analysis
$endgroup$
Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?
$1)$$lim_{|z|to infty}|f(z)|=infty$
$2)$$lim_{|z|to infty}|g(z)|=infty$
$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$
My attempt : option $1$ is only correct option
option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$
option $3$ and $4$ are contradiction of lioville thorem so it will be false
is its True ??
Any hints/solution will be appreciated
thanks u
complex-analysis
complex-analysis
edited Dec 17 '18 at 9:40
jasmine
asked Dec 17 '18 at 4:55
jasminejasmine
1,791417
1,791417
$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58
1
$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59
2
$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12
$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45
add a comment |
$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58
1
$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59
2
$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12
$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45
$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58
$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58
1
1
$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59
$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59
2
2
$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12
$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12
$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45
$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043542%2fwhich-of-the-following-statements-are-true%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043542%2fwhich-of-the-following-statements-are-true%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58
1
$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59
2
$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12
$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45