Which of the following statements are true..?












1












$begingroup$


Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?



$1)$$lim_{|z|to infty}|f(z)|=infty$



$2)$$lim_{|z|to infty}|g(z)|=infty$



$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



My attempt : option $1$ is only correct option



option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$



option $3$ and $4$ are contradiction of lioville thorem so it will be false



is its True ??



Any hints/solution will be appreciated



thanks u










share|cite|improve this question











$endgroup$












  • $begingroup$
    What's $x$ in the first two equations?
    $endgroup$
    – Andrei
    Dec 17 '18 at 4:58






  • 1




    $begingroup$
    @Andrei i have edits its
    $endgroup$
    – jasmine
    Dec 17 '18 at 4:59






  • 2




    $begingroup$
    3,4 do not contradict Liouville
    $endgroup$
    – zhw.
    Dec 17 '18 at 5:12










  • $begingroup$
    The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
    $endgroup$
    – LutzL
    Dec 17 '18 at 17:45
















1












$begingroup$


Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?



$1)$$lim_{|z|to infty}|f(z)|=infty$



$2)$$lim_{|z|to infty}|g(z)|=infty$



$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



My attempt : option $1$ is only correct option



option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$



option $3$ and $4$ are contradiction of lioville thorem so it will be false



is its True ??



Any hints/solution will be appreciated



thanks u










share|cite|improve this question











$endgroup$












  • $begingroup$
    What's $x$ in the first two equations?
    $endgroup$
    – Andrei
    Dec 17 '18 at 4:58






  • 1




    $begingroup$
    @Andrei i have edits its
    $endgroup$
    – jasmine
    Dec 17 '18 at 4:59






  • 2




    $begingroup$
    3,4 do not contradict Liouville
    $endgroup$
    – zhw.
    Dec 17 '18 at 5:12










  • $begingroup$
    The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
    $endgroup$
    – LutzL
    Dec 17 '18 at 17:45














1












1








1





$begingroup$


Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?



$1)$$lim_{|z|to infty}|f(z)|=infty$



$2)$$lim_{|z|to infty}|g(z)|=infty$



$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



My attempt : option $1$ is only correct option



option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$



option $3$ and $4$ are contradiction of lioville thorem so it will be false



is its True ??



Any hints/solution will be appreciated



thanks u










share|cite|improve this question











$endgroup$




Consider the entire function $f(z)=1+z+z^{20}$ and $g(z)=e^z,zin mathbb{C}$ Which of the following statements are true ?



$1)$$lim_{|z|to infty}|f(z)|=infty$



$2)$$lim_{|z|to infty}|g(z)|=infty$



$3)$$f^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



$4)$$g^{-1}({zin mathbb{C}:|z|le R})$ is bounded for every $R>0$



My attempt : option $1$ is only correct option



option 2) is false $lim_{x rightarrow -infty} e^{-x} = 0$



option $3$ and $4$ are contradiction of lioville thorem so it will be false



is its True ??



Any hints/solution will be appreciated



thanks u







complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 9:40







jasmine

















asked Dec 17 '18 at 4:55









jasminejasmine

1,791417




1,791417












  • $begingroup$
    What's $x$ in the first two equations?
    $endgroup$
    – Andrei
    Dec 17 '18 at 4:58






  • 1




    $begingroup$
    @Andrei i have edits its
    $endgroup$
    – jasmine
    Dec 17 '18 at 4:59






  • 2




    $begingroup$
    3,4 do not contradict Liouville
    $endgroup$
    – zhw.
    Dec 17 '18 at 5:12










  • $begingroup$
    The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
    $endgroup$
    – LutzL
    Dec 17 '18 at 17:45


















  • $begingroup$
    What's $x$ in the first two equations?
    $endgroup$
    – Andrei
    Dec 17 '18 at 4:58






  • 1




    $begingroup$
    @Andrei i have edits its
    $endgroup$
    – jasmine
    Dec 17 '18 at 4:59






  • 2




    $begingroup$
    3,4 do not contradict Liouville
    $endgroup$
    – zhw.
    Dec 17 '18 at 5:12










  • $begingroup$
    The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
    $endgroup$
    – LutzL
    Dec 17 '18 at 17:45
















$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58




$begingroup$
What's $x$ in the first two equations?
$endgroup$
– Andrei
Dec 17 '18 at 4:58




1




1




$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59




$begingroup$
@Andrei i have edits its
$endgroup$
– jasmine
Dec 17 '18 at 4:59




2




2




$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12




$begingroup$
3,4 do not contradict Liouville
$endgroup$
– zhw.
Dec 17 '18 at 5:12












$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45




$begingroup$
The existence of root bounds shows that 3) is true, $z^{20}+z+1=w$ implies that $|z|le 2+|w|=2+R$, with some work $|z|lesqrt[19]{2+R}$.
$endgroup$
– LutzL
Dec 17 '18 at 17:45










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043542%2fwhich-of-the-following-statements-are-true%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043542%2fwhich-of-the-following-statements-are-true%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How do I know what Microsoft account the skydrive app is syncing to?

When does type information flow backwards in C++?

Grease: Live!