Give an example of subset $B$ of the real line $mathbb{R}$ so the subsets $A$, $Int(A)$, $overline{A}$, dont...
0
$begingroup$
What is an example of a subset $A$ of the real line $mathbb{R}$ (equipped with the standard metric topology), such that the subsets $A$ , $Int(A)$ , $overline{A}$ , $overline{Int(A)}$ and Int( $overline{A}$ ) are pairwise different?
general-topology
share | cite | improve this question
edited Dec 6 '18 at 8:54
Esteban Cambiasso
asked Dec 3 '18 at 11:35
Esteban Cambiasso Esteban Cambiasso
10 3
...