Conditional Exspectation of Conditional Exspectation












0












$begingroup$


Picture of the Task here



I got this task to solve and i am very dissapointet of myself that i can't solve this.
I will write only m instead of Municipality and F instead of FederlState.



For a) i got $$mathbb{E}[wagevert m]=2 mathbb{1}_{m=1}+mathbb{1}_{m=2}+2.5mathbb{1}_{m=3}+2.5mathbb{1}_{m=4}. $$
For b) i have $$ mathbb{E}[vert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}.
$$

So nowc)
For the first one i have $$ mathbb{E}[mathbb{E} [wage vert m]vert F] overset{tower; property}{=} mathbb{E}[wagevert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2},$$
since $sigma(F)subset sigma(m)$.
For the second one i am not quite sure what to do. My idea was $$ mathbb{E} [mathbb{E} [wagevert F]vert m]=mathbb{E} [frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}vert m]=frac{9}{4} mathbb{1}_{min {1,3}}+2 mathbb{1}_{min{2,4}},$$ what is quite the same as before, so i think i made a mistke, but don't know where.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Picture of the Task here



    I got this task to solve and i am very dissapointet of myself that i can't solve this.
    I will write only m instead of Municipality and F instead of FederlState.



    For a) i got $$mathbb{E}[wagevert m]=2 mathbb{1}_{m=1}+mathbb{1}_{m=2}+2.5mathbb{1}_{m=3}+2.5mathbb{1}_{m=4}. $$
    For b) i have $$ mathbb{E}[vert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}.
    $$

    So nowc)
    For the first one i have $$ mathbb{E}[mathbb{E} [wage vert m]vert F] overset{tower; property}{=} mathbb{E}[wagevert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2},$$
    since $sigma(F)subset sigma(m)$.
    For the second one i am not quite sure what to do. My idea was $$ mathbb{E} [mathbb{E} [wagevert F]vert m]=mathbb{E} [frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}vert m]=frac{9}{4} mathbb{1}_{min {1,3}}+2 mathbb{1}_{min{2,4}},$$ what is quite the same as before, so i think i made a mistke, but don't know where.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Picture of the Task here



      I got this task to solve and i am very dissapointet of myself that i can't solve this.
      I will write only m instead of Municipality and F instead of FederlState.



      For a) i got $$mathbb{E}[wagevert m]=2 mathbb{1}_{m=1}+mathbb{1}_{m=2}+2.5mathbb{1}_{m=3}+2.5mathbb{1}_{m=4}. $$
      For b) i have $$ mathbb{E}[vert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}.
      $$

      So nowc)
      For the first one i have $$ mathbb{E}[mathbb{E} [wage vert m]vert F] overset{tower; property}{=} mathbb{E}[wagevert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2},$$
      since $sigma(F)subset sigma(m)$.
      For the second one i am not quite sure what to do. My idea was $$ mathbb{E} [mathbb{E} [wagevert F]vert m]=mathbb{E} [frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}vert m]=frac{9}{4} mathbb{1}_{min {1,3}}+2 mathbb{1}_{min{2,4}},$$ what is quite the same as before, so i think i made a mistke, but don't know where.










      share|cite|improve this question











      $endgroup$




      Picture of the Task here



      I got this task to solve and i am very dissapointet of myself that i can't solve this.
      I will write only m instead of Municipality and F instead of FederlState.



      For a) i got $$mathbb{E}[wagevert m]=2 mathbb{1}_{m=1}+mathbb{1}_{m=2}+2.5mathbb{1}_{m=3}+2.5mathbb{1}_{m=4}. $$
      For b) i have $$ mathbb{E}[vert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}.
      $$

      So nowc)
      For the first one i have $$ mathbb{E}[mathbb{E} [wage vert m]vert F] overset{tower; property}{=} mathbb{E}[wagevert F]=frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2},$$
      since $sigma(F)subset sigma(m)$.
      For the second one i am not quite sure what to do. My idea was $$ mathbb{E} [mathbb{E} [wagevert F]vert m]=mathbb{E} [frac{9}{4} mathbb{1}_{F=1}+2 mathbb{1}_{F=2}vert m]=frac{9}{4} mathbb{1}_{min {1,3}}+2 mathbb{1}_{min{2,4}},$$ what is quite the same as before, so i think i made a mistke, but don't know where.







      conditional-expectation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 '18 at 10:32







      Flo Geys

















      asked Dec 3 '18 at 10:15









      Flo GeysFlo Geys

      33




      33






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$


          "...what is quite the same as before, so I think I made a mistake..."




          No, you did not.



          Let $X,Y,Z$ be random variables with $sigma(Y)subseteqsigma(Z)$ or equivalently $Y=kleft(Zright)$ for some function $k$.



          Observe that for any suitable function $g$ we have: $$mathbb{E}left(mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(kleft(Zright)right)right)=$$$$mathbb{E}left(Xgleft(kleft(Zright)right)right)=mathbb{E}left(Xgleft(Yright)right)$$



          This allows the conclusion that $mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]=mathbb{E}left[Xmid Yright]$



          Setting $X=text{wage}$, $Y=F$ and $Z=m$ we find: $$mathbb{E}left[mathbb{E}left[text{wage}mid mright]mid Fright]=mathbb{E}left[text{wage}mid Fright]$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023874%2fconditional-exspectation-of-conditional-exspectation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$


            "...what is quite the same as before, so I think I made a mistake..."




            No, you did not.



            Let $X,Y,Z$ be random variables with $sigma(Y)subseteqsigma(Z)$ or equivalently $Y=kleft(Zright)$ for some function $k$.



            Observe that for any suitable function $g$ we have: $$mathbb{E}left(mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(kleft(Zright)right)right)=$$$$mathbb{E}left(Xgleft(kleft(Zright)right)right)=mathbb{E}left(Xgleft(Yright)right)$$



            This allows the conclusion that $mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]=mathbb{E}left[Xmid Yright]$



            Setting $X=text{wage}$, $Y=F$ and $Z=m$ we find: $$mathbb{E}left[mathbb{E}left[text{wage}mid mright]mid Fright]=mathbb{E}left[text{wage}mid Fright]$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$


              "...what is quite the same as before, so I think I made a mistake..."




              No, you did not.



              Let $X,Y,Z$ be random variables with $sigma(Y)subseteqsigma(Z)$ or equivalently $Y=kleft(Zright)$ for some function $k$.



              Observe that for any suitable function $g$ we have: $$mathbb{E}left(mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(kleft(Zright)right)right)=$$$$mathbb{E}left(Xgleft(kleft(Zright)right)right)=mathbb{E}left(Xgleft(Yright)right)$$



              This allows the conclusion that $mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]=mathbb{E}left[Xmid Yright]$



              Setting $X=text{wage}$, $Y=F$ and $Z=m$ we find: $$mathbb{E}left[mathbb{E}left[text{wage}mid mright]mid Fright]=mathbb{E}left[text{wage}mid Fright]$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$


                "...what is quite the same as before, so I think I made a mistake..."




                No, you did not.



                Let $X,Y,Z$ be random variables with $sigma(Y)subseteqsigma(Z)$ or equivalently $Y=kleft(Zright)$ for some function $k$.



                Observe that for any suitable function $g$ we have: $$mathbb{E}left(mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(kleft(Zright)right)right)=$$$$mathbb{E}left(Xgleft(kleft(Zright)right)right)=mathbb{E}left(Xgleft(Yright)right)$$



                This allows the conclusion that $mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]=mathbb{E}left[Xmid Yright]$



                Setting $X=text{wage}$, $Y=F$ and $Z=m$ we find: $$mathbb{E}left[mathbb{E}left[text{wage}mid mright]mid Fright]=mathbb{E}left[text{wage}mid Fright]$$






                share|cite|improve this answer









                $endgroup$




                "...what is quite the same as before, so I think I made a mistake..."




                No, you did not.



                Let $X,Y,Z$ be random variables with $sigma(Y)subseteqsigma(Z)$ or equivalently $Y=kleft(Zright)$ for some function $k$.



                Observe that for any suitable function $g$ we have: $$mathbb{E}left(mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(Yright)right)=mathbb{E}left(mathbb{E}left[Xmid Zright]gleft(kleft(Zright)right)right)=$$$$mathbb{E}left(Xgleft(kleft(Zright)right)right)=mathbb{E}left(Xgleft(Yright)right)$$



                This allows the conclusion that $mathbb{E}left[mathbb{E}left[Xmid Zright]mid Yright]=mathbb{E}left[Xmid Yright]$



                Setting $X=text{wage}$, $Y=F$ and $Z=m$ we find: $$mathbb{E}left[mathbb{E}left[text{wage}mid mright]mid Fright]=mathbb{E}left[text{wage}mid Fright]$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 3 '18 at 12:48









                drhabdrhab

                98.9k544130




                98.9k544130






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023874%2fconditional-exspectation-of-conditional-exspectation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix