Quotient of finite, nilpotent group by Frattini subgroup is isomorphic to product of quotients of Sylow...












0












$begingroup$


Let $G$ be a finite nilpotent group.



We know that $G=G_{p_1}times G_{p_2}times cdots times G_{p_r}$ where $G_{p_i}in Syl_{p_i}(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_{p_1}/Phi(G_{p_1})timescdotstimes G_{p_r}/Phi(G_{p_r})$,



where $Phi(G)$ is the Frattini subgroup of $G$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What's $Phi(G)$? Frattini subgroup?
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:42










  • $begingroup$
    @Lord Shark the Unknown Yes!
    $endgroup$
    – Qin
    Jul 26 '18 at 9:43






  • 1




    $begingroup$
    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:49








  • 2




    $begingroup$
    Yes: An "n" is missing.
    $endgroup$
    – Christian Blatter
    Jul 26 '18 at 10:08
















0












$begingroup$


Let $G$ be a finite nilpotent group.



We know that $G=G_{p_1}times G_{p_2}times cdots times G_{p_r}$ where $G_{p_i}in Syl_{p_i}(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_{p_1}/Phi(G_{p_1})timescdotstimes G_{p_r}/Phi(G_{p_r})$,



where $Phi(G)$ is the Frattini subgroup of $G$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What's $Phi(G)$? Frattini subgroup?
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:42










  • $begingroup$
    @Lord Shark the Unknown Yes!
    $endgroup$
    – Qin
    Jul 26 '18 at 9:43






  • 1




    $begingroup$
    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:49








  • 2




    $begingroup$
    Yes: An "n" is missing.
    $endgroup$
    – Christian Blatter
    Jul 26 '18 at 10:08














0












0








0





$begingroup$


Let $G$ be a finite nilpotent group.



We know that $G=G_{p_1}times G_{p_2}times cdots times G_{p_r}$ where $G_{p_i}in Syl_{p_i}(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_{p_1}/Phi(G_{p_1})timescdotstimes G_{p_r}/Phi(G_{p_r})$,



where $Phi(G)$ is the Frattini subgroup of $G$.










share|cite|improve this question











$endgroup$




Let $G$ be a finite nilpotent group.



We know that $G=G_{p_1}times G_{p_2}times cdots times G_{p_r}$ where $G_{p_i}in Syl_{p_i}(G)$, $i=1,dots,r$.



Is the following equation right? And why?



$G/Phi(G)=G_{p_1}/Phi(G_{p_1})timescdotstimes G_{p_r}/Phi(G_{p_r})$,



where $Phi(G)$ is the Frattini subgroup of $G$.







finite-groups group-isomorphism sylow-theory direct-product nilpotent-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 4:43









Shaun

9,380113684




9,380113684










asked Jul 26 '18 at 9:38









QinQin

200117




200117








  • 1




    $begingroup$
    What's $Phi(G)$? Frattini subgroup?
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:42










  • $begingroup$
    @Lord Shark the Unknown Yes!
    $endgroup$
    – Qin
    Jul 26 '18 at 9:43






  • 1




    $begingroup$
    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:49








  • 2




    $begingroup$
    Yes: An "n" is missing.
    $endgroup$
    – Christian Blatter
    Jul 26 '18 at 10:08














  • 1




    $begingroup$
    What's $Phi(G)$? Frattini subgroup?
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:42










  • $begingroup$
    @Lord Shark the Unknown Yes!
    $endgroup$
    – Qin
    Jul 26 '18 at 9:43






  • 1




    $begingroup$
    The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
    $endgroup$
    – Lord Shark the Unknown
    Jul 26 '18 at 9:49








  • 2




    $begingroup$
    Yes: An "n" is missing.
    $endgroup$
    – Christian Blatter
    Jul 26 '18 at 10:08








1




1




$begingroup$
What's $Phi(G)$? Frattini subgroup?
$endgroup$
– Lord Shark the Unknown
Jul 26 '18 at 9:42




$begingroup$
What's $Phi(G)$? Frattini subgroup?
$endgroup$
– Lord Shark the Unknown
Jul 26 '18 at 9:42












$begingroup$
@Lord Shark the Unknown Yes!
$endgroup$
– Qin
Jul 26 '18 at 9:43




$begingroup$
@Lord Shark the Unknown Yes!
$endgroup$
– Qin
Jul 26 '18 at 9:43




1




1




$begingroup$
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
$endgroup$
– Lord Shark the Unknown
Jul 26 '18 at 9:49






$begingroup$
The Frattini subgroup satisfies $Phi(H_1times H_2)=Phi(H_1)timesPhi(H_2)$ so then $(H_1times H_2)/Phi(H_1times H_2)=H_1/Phi(H_1)times H_2/Phi(H_2)$ etc.
$endgroup$
– Lord Shark the Unknown
Jul 26 '18 at 9:49






2




2




$begingroup$
Yes: An "n" is missing.
$endgroup$
– Christian Blatter
Jul 26 '18 at 10:08




$begingroup$
Yes: An "n" is missing.
$endgroup$
– Christian Blatter
Jul 26 '18 at 10:08










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863253%2fquotient-of-finite-nilpotent-group-by-frattini-subgroup-is-isomorphic-to-produc%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863253%2fquotient-of-finite-nilpotent-group-by-frattini-subgroup-is-isomorphic-to-produc%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix