Construction of an isomorphism between certain subgroups of $GL_2(mathbb{C})$ and $S_4.$












1












$begingroup$


Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$



Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.



Proof:



By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$



$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$



Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
    $endgroup$
    – Tobias Kildetoft
    Nov 26 '13 at 14:12










  • $begingroup$
    Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:34










  • $begingroup$
    Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:45
















1












$begingroup$


Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$



Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.



Proof:



By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$



$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$



Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
    $endgroup$
    – Tobias Kildetoft
    Nov 26 '13 at 14:12










  • $begingroup$
    Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:34










  • $begingroup$
    Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:45














1












1








1





$begingroup$


Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$



Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.



Proof:



By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$



$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$



Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?










share|cite|improve this question











$endgroup$




Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$



Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.



Proof:



By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$



$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$



Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?







finite-groups group-isomorphism






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 5:21









Shaun

9,380113684




9,380113684










asked Nov 26 '13 at 14:09









Alexy VincenzoAlexy Vincenzo

2,1803926




2,1803926








  • 2




    $begingroup$
    You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
    $endgroup$
    – Tobias Kildetoft
    Nov 26 '13 at 14:12










  • $begingroup$
    Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:34










  • $begingroup$
    Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:45














  • 2




    $begingroup$
    You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
    $endgroup$
    – Tobias Kildetoft
    Nov 26 '13 at 14:12










  • $begingroup$
    Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:34










  • $begingroup$
    Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
    $endgroup$
    – Alexy Vincenzo
    Nov 26 '13 at 14:45








2




2




$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12




$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12












$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34




$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34












$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45




$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f581945%2fconstruction-of-an-isomorphism-between-certain-subgroups-of-gl-2-mathbbc-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f581945%2fconstruction-of-an-isomorphism-between-certain-subgroups-of-gl-2-mathbbc-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How do I know what Microsoft account the skydrive app is syncing to?

When does type information flow backwards in C++?

Grease: Live!