Construction of an isomorphism between certain subgroups of $GL_2(mathbb{C})$ and $S_4.$
$begingroup$
Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$
Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.
Proof:
By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$
$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$
Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?
finite-groups group-isomorphism
$endgroup$
add a comment |
$begingroup$
Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$
Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.
Proof:
By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$
$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$
Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?
finite-groups group-isomorphism
$endgroup$
2
$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12
$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34
$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45
add a comment |
$begingroup$
Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$
Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.
Proof:
By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$
$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$
Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?
finite-groups group-isomorphism
$endgroup$
Consider the following matrices $A:=$$ begin{pmatrix}
0 & 1 \
-1 & 0
end{pmatrix} , B: =begin{pmatrix}
0 & 1 \
1 & 0
end{pmatrix}$ of multiplicative group $GL_2(mathbb{C})$ and $sigma = (1234), rho = (24) in S_4.$ Let $G_1 = left langle {A,B}right rangle$ and $G_2= left langle {sigma,rho}right rangle.$ Is $G_1 cong G_2?$
Here is my proof. But I have trouble showing $G_1 cong G_2.$ Could someone advise please? Thank you.
Proof:
By direct computation, $o(A)=4$ and $o(B)=2.$ Since $A^i neq B (i=0,1,2,3),$ $G_1 = {A^{i}B^{j}| i=0,1,2,3 wedge j=0,1},$ whence $|G_1|=8.$
$sigma^2=(13)(24), sigma^3=(1432), sigma^4= (1).$ So $o(sigma)=4.$
Similarly, $o(rho)=2.$ By similar reasoning above, $G_2= {sigma^irho^j| i =0,1,2,3 wedge j=0,1},$ whence $|G_2|=8.$
Given $A^iB^j in G_1, $ let $A^iB^j mapsto sigma^irho^j.$ Clearly, this mapping is surjective. But how do I show this mapping is injective homomorphism?
finite-groups group-isomorphism
finite-groups group-isomorphism
edited Dec 22 '18 at 5:21
Shaun
9,380113684
9,380113684
asked Nov 26 '13 at 14:09
Alexy VincenzoAlexy Vincenzo
2,1803926
2,1803926
2
$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12
$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34
$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45
add a comment |
2
$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12
$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34
$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45
2
2
$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12
$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12
$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34
$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34
$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45
$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f581945%2fconstruction-of-an-isomorphism-between-certain-subgroups-of-gl-2-mathbbc-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f581945%2fconstruction-of-an-isomorphism-between-certain-subgroups-of-gl-2-mathbbc-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
You have not shown that all elements in the group generated by $A$ and $B$ can be written in the form you give. What about for example $BA$?
$endgroup$
– Tobias Kildetoft
Nov 26 '13 at 14:12
$begingroup$
Thanks for correction. $BAB= A^3.$ Hence, $BA=A^3B^{-1}=A^3B , BA^2=A^3B^{-1}A=A^6B=A^2B, BA^3= A^2BA=A^5B=AB$
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:34
$begingroup$
Also, $rhosigmarho= sigma^{-1}=sigma^3.$ Hence, $rhosigma=sigma^3rho^{-1} = sigma^3rho, rhosigma^2 = sigma^3sigma^{-1}rho= sigma^2rho, rhosigma^3=sigma^2rhosigma=sigma^5rho=sigmarho. $
$endgroup$
– Alexy Vincenzo
Nov 26 '13 at 14:45