Continuity of the following function












1












$begingroup$


Let $f:[a,b] to Bbb R$ be continuous . Define $g:[a,b] to Bbb R$ by $$g(x) = sup[f(t) | t in [a,x]].$$



Then is $g$ continuous? I tried to show the inequality $$|g(x)-g(y)| le sup(f(t) | t in [x,y])$$ but wasn’t able to. Any hints or suggestions will be appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: $g$ is monotone increasing, so if there were a discontinuity at $x = x_0$, it would have to be the case that $lim_{x to x_0^-} g(x) < lim_{x to x_0^+} g(x)$. Apply the Intermediate Value Theorem to $f$.
    $endgroup$
    – Theo Bendit
    Oct 29 '18 at 13:47












  • $begingroup$
    Can you elaborate?
    $endgroup$
    – John Mitchell
    Oct 29 '18 at 16:53
















1












$begingroup$


Let $f:[a,b] to Bbb R$ be continuous . Define $g:[a,b] to Bbb R$ by $$g(x) = sup[f(t) | t in [a,x]].$$



Then is $g$ continuous? I tried to show the inequality $$|g(x)-g(y)| le sup(f(t) | t in [x,y])$$ but wasn’t able to. Any hints or suggestions will be appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: $g$ is monotone increasing, so if there were a discontinuity at $x = x_0$, it would have to be the case that $lim_{x to x_0^-} g(x) < lim_{x to x_0^+} g(x)$. Apply the Intermediate Value Theorem to $f$.
    $endgroup$
    – Theo Bendit
    Oct 29 '18 at 13:47












  • $begingroup$
    Can you elaborate?
    $endgroup$
    – John Mitchell
    Oct 29 '18 at 16:53














1












1








1





$begingroup$


Let $f:[a,b] to Bbb R$ be continuous . Define $g:[a,b] to Bbb R$ by $$g(x) = sup[f(t) | t in [a,x]].$$



Then is $g$ continuous? I tried to show the inequality $$|g(x)-g(y)| le sup(f(t) | t in [x,y])$$ but wasn’t able to. Any hints or suggestions will be appreciated.










share|cite|improve this question











$endgroup$




Let $f:[a,b] to Bbb R$ be continuous . Define $g:[a,b] to Bbb R$ by $$g(x) = sup[f(t) | t in [a,x]].$$



Then is $g$ continuous? I tried to show the inequality $$|g(x)-g(y)| le sup(f(t) | t in [x,y])$$ but wasn’t able to. Any hints or suggestions will be appreciated.







real-analysis calculus continuity supremum-and-infimum






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 12:42









Davide Giraudo

128k17156268




128k17156268










asked Oct 29 '18 at 13:25









John MitchellJohn Mitchell

377210




377210








  • 1




    $begingroup$
    Hint: $g$ is monotone increasing, so if there were a discontinuity at $x = x_0$, it would have to be the case that $lim_{x to x_0^-} g(x) < lim_{x to x_0^+} g(x)$. Apply the Intermediate Value Theorem to $f$.
    $endgroup$
    – Theo Bendit
    Oct 29 '18 at 13:47












  • $begingroup$
    Can you elaborate?
    $endgroup$
    – John Mitchell
    Oct 29 '18 at 16:53














  • 1




    $begingroup$
    Hint: $g$ is monotone increasing, so if there were a discontinuity at $x = x_0$, it would have to be the case that $lim_{x to x_0^-} g(x) < lim_{x to x_0^+} g(x)$. Apply the Intermediate Value Theorem to $f$.
    $endgroup$
    – Theo Bendit
    Oct 29 '18 at 13:47












  • $begingroup$
    Can you elaborate?
    $endgroup$
    – John Mitchell
    Oct 29 '18 at 16:53








1




1




$begingroup$
Hint: $g$ is monotone increasing, so if there were a discontinuity at $x = x_0$, it would have to be the case that $lim_{x to x_0^-} g(x) < lim_{x to x_0^+} g(x)$. Apply the Intermediate Value Theorem to $f$.
$endgroup$
– Theo Bendit
Oct 29 '18 at 13:47






$begingroup$
Hint: $g$ is monotone increasing, so if there were a discontinuity at $x = x_0$, it would have to be the case that $lim_{x to x_0^-} g(x) < lim_{x to x_0^+} g(x)$. Apply the Intermediate Value Theorem to $f$.
$endgroup$
– Theo Bendit
Oct 29 '18 at 13:47














$begingroup$
Can you elaborate?
$endgroup$
– John Mitchell
Oct 29 '18 at 16:53




$begingroup$
Can you elaborate?
$endgroup$
– John Mitchell
Oct 29 '18 at 16:53










2 Answers
2






active

oldest

votes


















0












$begingroup$

Let $aleqslant xlt y$. Then
$$
g(y)=maxleft{sup_{aleqslant tleqslant x}leftlvert f(t)rightrvert,sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}= maxleft{g(x),sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}.
$$

We use the bound
$$
sup_{xleqslant tleqslant y}leftlvert f(t)rightrvert leqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+ leftlvert f(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+g(x)
$$

in order to get
$$
g(y)leqslant maxleft{g(x),g(x)+sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}=g(x)+maxleft{0,sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}
$$

and since $g$ is non-decreasing, it follows that
$$
leftlvert g(y)-g(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert.
$$

Now the continuity of $g$ follows from the uniform continuity of $f$: fix a positive $varepsilon$ and choose $delta$ such that if $aleqslant t_1,t_2leqslant b$ are such that $leftlvert t_2-t_1rightrvertlt delta$, then $leftlvert f(t_2)-f(t_1)rightrvertlt varepsilon$.
If $aleqslant xlt yleqslant b$ and $y-xleqslant delta$, the previous inequality shows that $leftlvert g(y)-g(x)rightrvertleqslantvarepsilon$.






share|cite|improve this answer









$endgroup$





















    -1












    $begingroup$

    Your inequality is false. Suppose that $f:[0,1]rightarrow mathbf{R}$ is given by



    $$f(x) = 2x-1.$$



    then $g(x) = 2x-1$. What is $|g(1/4)-g(3/4)|$ and what is $sup{f(t)mid tin [1/4,3/4]}$?



    For a given $x>0$ consider that $exists xi_x$ such that $f(xi_x) = g(x)$ for every $x$ (why is that?). Suppose that $f(x)<f(xi_x)$ then $f(x+delta)<f(xi_x)$ for $|delta|<d$ where $d$ is sufficiently small (why is that?). Then $g$ is constant on $(x-d,x+d)$ and hence continuous.



    Suppose now that $f(x) = f(xi_x) = g(x)$, given $varepsilon>0$ pick $delta>0$ such that $|y-x|<delta$ implies that $|f(x)-f(y)|<varepsilon$. What can then be said about $sup{f(t)mid tin [0,x+delta]}$?






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I think you’ve made a mistake. It should be g is continuous since g is constant.
      $endgroup$
      – John Mitchell
      Oct 30 '18 at 3:03










    • $begingroup$
      Yes it should be g
      $endgroup$
      – Olof Rubin
      Oct 30 '18 at 6:33












    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2976140%2fcontinuity-of-the-following-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Let $aleqslant xlt y$. Then
    $$
    g(y)=maxleft{sup_{aleqslant tleqslant x}leftlvert f(t)rightrvert,sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}= maxleft{g(x),sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}.
    $$

    We use the bound
    $$
    sup_{xleqslant tleqslant y}leftlvert f(t)rightrvert leqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+ leftlvert f(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+g(x)
    $$

    in order to get
    $$
    g(y)leqslant maxleft{g(x),g(x)+sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}=g(x)+maxleft{0,sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}
    $$

    and since $g$ is non-decreasing, it follows that
    $$
    leftlvert g(y)-g(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert.
    $$

    Now the continuity of $g$ follows from the uniform continuity of $f$: fix a positive $varepsilon$ and choose $delta$ such that if $aleqslant t_1,t_2leqslant b$ are such that $leftlvert t_2-t_1rightrvertlt delta$, then $leftlvert f(t_2)-f(t_1)rightrvertlt varepsilon$.
    If $aleqslant xlt yleqslant b$ and $y-xleqslant delta$, the previous inequality shows that $leftlvert g(y)-g(x)rightrvertleqslantvarepsilon$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Let $aleqslant xlt y$. Then
      $$
      g(y)=maxleft{sup_{aleqslant tleqslant x}leftlvert f(t)rightrvert,sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}= maxleft{g(x),sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}.
      $$

      We use the bound
      $$
      sup_{xleqslant tleqslant y}leftlvert f(t)rightrvert leqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+ leftlvert f(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+g(x)
      $$

      in order to get
      $$
      g(y)leqslant maxleft{g(x),g(x)+sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}=g(x)+maxleft{0,sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}
      $$

      and since $g$ is non-decreasing, it follows that
      $$
      leftlvert g(y)-g(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert.
      $$

      Now the continuity of $g$ follows from the uniform continuity of $f$: fix a positive $varepsilon$ and choose $delta$ such that if $aleqslant t_1,t_2leqslant b$ are such that $leftlvert t_2-t_1rightrvertlt delta$, then $leftlvert f(t_2)-f(t_1)rightrvertlt varepsilon$.
      If $aleqslant xlt yleqslant b$ and $y-xleqslant delta$, the previous inequality shows that $leftlvert g(y)-g(x)rightrvertleqslantvarepsilon$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Let $aleqslant xlt y$. Then
        $$
        g(y)=maxleft{sup_{aleqslant tleqslant x}leftlvert f(t)rightrvert,sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}= maxleft{g(x),sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}.
        $$

        We use the bound
        $$
        sup_{xleqslant tleqslant y}leftlvert f(t)rightrvert leqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+ leftlvert f(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+g(x)
        $$

        in order to get
        $$
        g(y)leqslant maxleft{g(x),g(x)+sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}=g(x)+maxleft{0,sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}
        $$

        and since $g$ is non-decreasing, it follows that
        $$
        leftlvert g(y)-g(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert.
        $$

        Now the continuity of $g$ follows from the uniform continuity of $f$: fix a positive $varepsilon$ and choose $delta$ such that if $aleqslant t_1,t_2leqslant b$ are such that $leftlvert t_2-t_1rightrvertlt delta$, then $leftlvert f(t_2)-f(t_1)rightrvertlt varepsilon$.
        If $aleqslant xlt yleqslant b$ and $y-xleqslant delta$, the previous inequality shows that $leftlvert g(y)-g(x)rightrvertleqslantvarepsilon$.






        share|cite|improve this answer









        $endgroup$



        Let $aleqslant xlt y$. Then
        $$
        g(y)=maxleft{sup_{aleqslant tleqslant x}leftlvert f(t)rightrvert,sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}= maxleft{g(x),sup_{xleqslant tleqslant y}leftlvert f(t)rightrvertright}.
        $$

        We use the bound
        $$
        sup_{xleqslant tleqslant y}leftlvert f(t)rightrvert leqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+ leftlvert f(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert+g(x)
        $$

        in order to get
        $$
        g(y)leqslant maxleft{g(x),g(x)+sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}=g(x)+maxleft{0,sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvertright}
        $$

        and since $g$ is non-decreasing, it follows that
        $$
        leftlvert g(y)-g(x)rightrvertleqslant sup_{xleqslant tleqslant y}leftlvert f(t)-f(x)rightrvert.
        $$

        Now the continuity of $g$ follows from the uniform continuity of $f$: fix a positive $varepsilon$ and choose $delta$ such that if $aleqslant t_1,t_2leqslant b$ are such that $leftlvert t_2-t_1rightrvertlt delta$, then $leftlvert f(t_2)-f(t_1)rightrvertlt varepsilon$.
        If $aleqslant xlt yleqslant b$ and $y-xleqslant delta$, the previous inequality shows that $leftlvert g(y)-g(x)rightrvertleqslantvarepsilon$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 8 at 11:35









        Davide GiraudoDavide Giraudo

        128k17156268




        128k17156268























            -1












            $begingroup$

            Your inequality is false. Suppose that $f:[0,1]rightarrow mathbf{R}$ is given by



            $$f(x) = 2x-1.$$



            then $g(x) = 2x-1$. What is $|g(1/4)-g(3/4)|$ and what is $sup{f(t)mid tin [1/4,3/4]}$?



            For a given $x>0$ consider that $exists xi_x$ such that $f(xi_x) = g(x)$ for every $x$ (why is that?). Suppose that $f(x)<f(xi_x)$ then $f(x+delta)<f(xi_x)$ for $|delta|<d$ where $d$ is sufficiently small (why is that?). Then $g$ is constant on $(x-d,x+d)$ and hence continuous.



            Suppose now that $f(x) = f(xi_x) = g(x)$, given $varepsilon>0$ pick $delta>0$ such that $|y-x|<delta$ implies that $|f(x)-f(y)|<varepsilon$. What can then be said about $sup{f(t)mid tin [0,x+delta]}$?






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I think you’ve made a mistake. It should be g is continuous since g is constant.
              $endgroup$
              – John Mitchell
              Oct 30 '18 at 3:03










            • $begingroup$
              Yes it should be g
              $endgroup$
              – Olof Rubin
              Oct 30 '18 at 6:33
















            -1












            $begingroup$

            Your inequality is false. Suppose that $f:[0,1]rightarrow mathbf{R}$ is given by



            $$f(x) = 2x-1.$$



            then $g(x) = 2x-1$. What is $|g(1/4)-g(3/4)|$ and what is $sup{f(t)mid tin [1/4,3/4]}$?



            For a given $x>0$ consider that $exists xi_x$ such that $f(xi_x) = g(x)$ for every $x$ (why is that?). Suppose that $f(x)<f(xi_x)$ then $f(x+delta)<f(xi_x)$ for $|delta|<d$ where $d$ is sufficiently small (why is that?). Then $g$ is constant on $(x-d,x+d)$ and hence continuous.



            Suppose now that $f(x) = f(xi_x) = g(x)$, given $varepsilon>0$ pick $delta>0$ such that $|y-x|<delta$ implies that $|f(x)-f(y)|<varepsilon$. What can then be said about $sup{f(t)mid tin [0,x+delta]}$?






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I think you’ve made a mistake. It should be g is continuous since g is constant.
              $endgroup$
              – John Mitchell
              Oct 30 '18 at 3:03










            • $begingroup$
              Yes it should be g
              $endgroup$
              – Olof Rubin
              Oct 30 '18 at 6:33














            -1












            -1








            -1





            $begingroup$

            Your inequality is false. Suppose that $f:[0,1]rightarrow mathbf{R}$ is given by



            $$f(x) = 2x-1.$$



            then $g(x) = 2x-1$. What is $|g(1/4)-g(3/4)|$ and what is $sup{f(t)mid tin [1/4,3/4]}$?



            For a given $x>0$ consider that $exists xi_x$ such that $f(xi_x) = g(x)$ for every $x$ (why is that?). Suppose that $f(x)<f(xi_x)$ then $f(x+delta)<f(xi_x)$ for $|delta|<d$ where $d$ is sufficiently small (why is that?). Then $g$ is constant on $(x-d,x+d)$ and hence continuous.



            Suppose now that $f(x) = f(xi_x) = g(x)$, given $varepsilon>0$ pick $delta>0$ such that $|y-x|<delta$ implies that $|f(x)-f(y)|<varepsilon$. What can then be said about $sup{f(t)mid tin [0,x+delta]}$?






            share|cite|improve this answer











            $endgroup$



            Your inequality is false. Suppose that $f:[0,1]rightarrow mathbf{R}$ is given by



            $$f(x) = 2x-1.$$



            then $g(x) = 2x-1$. What is $|g(1/4)-g(3/4)|$ and what is $sup{f(t)mid tin [1/4,3/4]}$?



            For a given $x>0$ consider that $exists xi_x$ such that $f(xi_x) = g(x)$ for every $x$ (why is that?). Suppose that $f(x)<f(xi_x)$ then $f(x+delta)<f(xi_x)$ for $|delta|<d$ where $d$ is sufficiently small (why is that?). Then $g$ is constant on $(x-d,x+d)$ and hence continuous.



            Suppose now that $f(x) = f(xi_x) = g(x)$, given $varepsilon>0$ pick $delta>0$ such that $|y-x|<delta$ implies that $|f(x)-f(y)|<varepsilon$. What can then be said about $sup{f(t)mid tin [0,x+delta]}$?







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Oct 30 '18 at 8:02

























            answered Oct 29 '18 at 19:35









            Olof RubinOlof Rubin

            878317




            878317












            • $begingroup$
              I think you’ve made a mistake. It should be g is continuous since g is constant.
              $endgroup$
              – John Mitchell
              Oct 30 '18 at 3:03










            • $begingroup$
              Yes it should be g
              $endgroup$
              – Olof Rubin
              Oct 30 '18 at 6:33


















            • $begingroup$
              I think you’ve made a mistake. It should be g is continuous since g is constant.
              $endgroup$
              – John Mitchell
              Oct 30 '18 at 3:03










            • $begingroup$
              Yes it should be g
              $endgroup$
              – Olof Rubin
              Oct 30 '18 at 6:33
















            $begingroup$
            I think you’ve made a mistake. It should be g is continuous since g is constant.
            $endgroup$
            – John Mitchell
            Oct 30 '18 at 3:03




            $begingroup$
            I think you’ve made a mistake. It should be g is continuous since g is constant.
            $endgroup$
            – John Mitchell
            Oct 30 '18 at 3:03












            $begingroup$
            Yes it should be g
            $endgroup$
            – Olof Rubin
            Oct 30 '18 at 6:33




            $begingroup$
            Yes it should be g
            $endgroup$
            – Olof Rubin
            Oct 30 '18 at 6:33


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2976140%2fcontinuity-of-the-following-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix