Divisor over ellitptic curves












0












$begingroup$


I struggle to prove the following theorem :



Let $E$ be an elliptic curve over a field $K$. Let $D=sum n_p P$ be a divisor on $E$. Then $D sim 0$ if and only if $sum [n_p]P=mathcal{O}$ where $mathcal{O}$ is the neutral for the group law of the curve.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    See prop 3.4 & cor 3.5 in Silverman: pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf
    $endgroup$
    – ODF
    Dec 22 '18 at 17:52










  • $begingroup$
    Chapter ? Thank you !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 17:55






  • 1




    $begingroup$
    Chapter III, sorry!
    $endgroup$
    – ODF
    Dec 22 '18 at 17:56










  • $begingroup$
    Thank you very much !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 18:00
















0












$begingroup$


I struggle to prove the following theorem :



Let $E$ be an elliptic curve over a field $K$. Let $D=sum n_p P$ be a divisor on $E$. Then $D sim 0$ if and only if $sum [n_p]P=mathcal{O}$ where $mathcal{O}$ is the neutral for the group law of the curve.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    See prop 3.4 & cor 3.5 in Silverman: pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf
    $endgroup$
    – ODF
    Dec 22 '18 at 17:52










  • $begingroup$
    Chapter ? Thank you !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 17:55






  • 1




    $begingroup$
    Chapter III, sorry!
    $endgroup$
    – ODF
    Dec 22 '18 at 17:56










  • $begingroup$
    Thank you very much !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 18:00














0












0








0





$begingroup$


I struggle to prove the following theorem :



Let $E$ be an elliptic curve over a field $K$. Let $D=sum n_p P$ be a divisor on $E$. Then $D sim 0$ if and only if $sum [n_p]P=mathcal{O}$ where $mathcal{O}$ is the neutral for the group law of the curve.










share|cite|improve this question









$endgroup$




I struggle to prove the following theorem :



Let $E$ be an elliptic curve over a field $K$. Let $D=sum n_p P$ be a divisor on $E$. Then $D sim 0$ if and only if $sum [n_p]P=mathcal{O}$ where $mathcal{O}$ is the neutral for the group law of the curve.







elliptic-curves divisors-algebraic-geometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 22 '18 at 16:57









Pierre21Pierre21

1118




1118








  • 1




    $begingroup$
    See prop 3.4 & cor 3.5 in Silverman: pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf
    $endgroup$
    – ODF
    Dec 22 '18 at 17:52










  • $begingroup$
    Chapter ? Thank you !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 17:55






  • 1




    $begingroup$
    Chapter III, sorry!
    $endgroup$
    – ODF
    Dec 22 '18 at 17:56










  • $begingroup$
    Thank you very much !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 18:00














  • 1




    $begingroup$
    See prop 3.4 & cor 3.5 in Silverman: pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf
    $endgroup$
    – ODF
    Dec 22 '18 at 17:52










  • $begingroup$
    Chapter ? Thank you !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 17:55






  • 1




    $begingroup$
    Chapter III, sorry!
    $endgroup$
    – ODF
    Dec 22 '18 at 17:56










  • $begingroup$
    Thank you very much !
    $endgroup$
    – Pierre21
    Dec 22 '18 at 18:00








1




1




$begingroup$
See prop 3.4 & cor 3.5 in Silverman: pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf
$endgroup$
– ODF
Dec 22 '18 at 17:52




$begingroup$
See prop 3.4 & cor 3.5 in Silverman: pdmi.ras.ru/~lowdimma/BSD/Silverman-Arithmetic_of_EC.pdf
$endgroup$
– ODF
Dec 22 '18 at 17:52












$begingroup$
Chapter ? Thank you !
$endgroup$
– Pierre21
Dec 22 '18 at 17:55




$begingroup$
Chapter ? Thank you !
$endgroup$
– Pierre21
Dec 22 '18 at 17:55




1




1




$begingroup$
Chapter III, sorry!
$endgroup$
– ODF
Dec 22 '18 at 17:56




$begingroup$
Chapter III, sorry!
$endgroup$
– ODF
Dec 22 '18 at 17:56












$begingroup$
Thank you very much !
$endgroup$
– Pierre21
Dec 22 '18 at 18:00




$begingroup$
Thank you very much !
$endgroup$
– Pierre21
Dec 22 '18 at 18:00










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049638%2fdivisor-over-ellitptic-curves%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049638%2fdivisor-over-ellitptic-curves%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix