Calculating time-to-65mph for a car considering air drag
$begingroup$
Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.
I know that the forces acting on the car are:
1) $F_e = frac {P_e}{v}$
being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.
2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $
- rho = air denisty = 1.2 g/m3
- Cd = air drag coefficient = 0.3
- A = frontal area = 2.2 m2
- m = mass 1000 kg
- g = 9.18 m/s2
- Crr = wheels drag = 0.01
So the total force is:
Ft = Fe - Fd
This is of course = m * dv/dt :
$F_t = mfrac{dv}{dt}$
$F_e - F_d = mfrac{dv}{dt}$
$frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$
grouping constants and sorting by power:
$- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$
Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...
Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.
differential
$endgroup$
add a comment |
$begingroup$
Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.
I know that the forces acting on the car are:
1) $F_e = frac {P_e}{v}$
being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.
2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $
- rho = air denisty = 1.2 g/m3
- Cd = air drag coefficient = 0.3
- A = frontal area = 2.2 m2
- m = mass 1000 kg
- g = 9.18 m/s2
- Crr = wheels drag = 0.01
So the total force is:
Ft = Fe - Fd
This is of course = m * dv/dt :
$F_t = mfrac{dv}{dt}$
$F_e - F_d = mfrac{dv}{dt}$
$frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$
grouping constants and sorting by power:
$- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$
Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...
Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.
differential
$endgroup$
add a comment |
$begingroup$
Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.
I know that the forces acting on the car are:
1) $F_e = frac {P_e}{v}$
being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.
2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $
- rho = air denisty = 1.2 g/m3
- Cd = air drag coefficient = 0.3
- A = frontal area = 2.2 m2
- m = mass 1000 kg
- g = 9.18 m/s2
- Crr = wheels drag = 0.01
So the total force is:
Ft = Fe - Fd
This is of course = m * dv/dt :
$F_t = mfrac{dv}{dt}$
$F_e - F_d = mfrac{dv}{dt}$
$frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$
grouping constants and sorting by power:
$- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$
Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...
Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.
differential
$endgroup$
Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.
I know that the forces acting on the car are:
1) $F_e = frac {P_e}{v}$
being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.
2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $
- rho = air denisty = 1.2 g/m3
- Cd = air drag coefficient = 0.3
- A = frontal area = 2.2 m2
- m = mass 1000 kg
- g = 9.18 m/s2
- Crr = wheels drag = 0.01
So the total force is:
Ft = Fe - Fd
This is of course = m * dv/dt :
$F_t = mfrac{dv}{dt}$
$F_e - F_d = mfrac{dv}{dt}$
$frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$
grouping constants and sorting by power:
$- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$
Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...
Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.
differential
differential
asked Dec 22 '18 at 16:39
jumpjackjumpjack
1226
1226
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
From
$$
- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
$$
we get
$$
frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
$$
now
being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have
$$
frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
$$
giving after integration
$$
frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
$$
or
$$
(v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
(v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
$$
or
$$
(v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
$$
Adding constants for readability:
$$
(v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
$$
now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have
$$
(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
$$
and thus
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
$$
NOTE
At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with
$$
v = frac{ds}{dt} = f(t,C_1)
$$
obtaining after integration
$$
s(t) = g(t,C_1,C_2)
$$
anyway I would suggest the numerical approach.
$endgroup$
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
1
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
|
show 3 more comments
$begingroup$
Short answer
$$
t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
- $alpha = v_1(v_2-v_3)$
- $beta = v_2(v_3-v_1) $
- $gamma = v_3(v_1-v_2)$
- $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$
v1, v2 and v3 are the roots of:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
$K_1 = 0.5 * 1.225 * Cd * A $
1.225 = air density g/m3
$C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)
A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)
$K_2 = m * 9.81 * C_{rr} $
m = mass of vehicle in kg
9.81 = gravitational acceleration m/s2
$C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)
$ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $
$ u = frac{P}{rho C_dA} $
$v= frac{2mgC_{rr}}{3 rho C_dA}$
Generic final speed:
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.
Demonstration
Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:
$ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $
and sorting by power:
$ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $
Separating t and v:
$ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $
Mirroring:
$ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$
So we can now integrate on both sides
$int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$
$ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$
Lower factor can be written as:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$
Hence we can write:
$ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $
getting (source):
$$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$
Replacing with some constants for readability:
$ alpha = v_1 (v_2 - v_3) $
$ beta = v_2 (v_3 - v_1)$
$ gamma = v_3 (v_1 - v_2)$
$ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $
$$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$
or
$$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$
or
$$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$
Being:
$a*ln(b) = ln (b^a) $
we can then rewrite in this form:
$$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$
Then we can transform into:
$$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$
But this can be split into:
$$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$
which means:
$$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$
Bringing C1 to left:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
Applying logarithm again:
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$
and finally:
$$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$
We need to calculate C1 value. This can be done considering initial conditions:
t=0, v=0
Putting these values in previous equation:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
we get:
$$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$
$$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$
$$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$
This means that, for final conditions tf = unknown and vf = known we have:
(1) $
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$
V1, V2, V3 calculation
Now we only need v1, v2 and v3,which are the solutions of the equation:
$-K_1v^3 - K_2 v + P= 0$
Adding "missing" coefficient:
$-K_1v^3 + 0 v^2- K_2 v + P= 0$
This is a 3rd grade equation, whose solutions can be determined as follows:
It can be expressed in the form of
$ax^3 + bx^2 + cx + d = 0$
being:
- a = $-K_1 = - 0.5 rho C_dA$
- b = 0
- c = $-K_2 = -mgC_{rr}$
d = P
Solutions are (source):
$ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $
where (considering b=0)
$p = frac{-b}{3a} = 0 $
$q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$
$r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$
$s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Shortly:
$q = frac{P_{ower}}{rho C_dA}$
$s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Due to p = 0 (as b=0):
$ x = sqrt[3]{q + s} + sqrt[3]{q - s} $
replacing:
$ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $
This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049621%2fcalculating-time-to-65mph-for-a-car-considering-air-drag%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From
$$
- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
$$
we get
$$
frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
$$
now
being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have
$$
frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
$$
giving after integration
$$
frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
$$
or
$$
(v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
(v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
$$
or
$$
(v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
$$
Adding constants for readability:
$$
(v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
$$
now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have
$$
(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
$$
and thus
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
$$
NOTE
At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with
$$
v = frac{ds}{dt} = f(t,C_1)
$$
obtaining after integration
$$
s(t) = g(t,C_1,C_2)
$$
anyway I would suggest the numerical approach.
$endgroup$
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
1
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
|
show 3 more comments
$begingroup$
From
$$
- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
$$
we get
$$
frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
$$
now
being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have
$$
frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
$$
giving after integration
$$
frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
$$
or
$$
(v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
(v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
$$
or
$$
(v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
$$
Adding constants for readability:
$$
(v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
$$
now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have
$$
(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
$$
and thus
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
$$
NOTE
At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with
$$
v = frac{ds}{dt} = f(t,C_1)
$$
obtaining after integration
$$
s(t) = g(t,C_1,C_2)
$$
anyway I would suggest the numerical approach.
$endgroup$
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
1
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
|
show 3 more comments
$begingroup$
From
$$
- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
$$
we get
$$
frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
$$
now
being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have
$$
frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
$$
giving after integration
$$
frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
$$
or
$$
(v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
(v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
$$
or
$$
(v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
$$
Adding constants for readability:
$$
(v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
$$
now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have
$$
(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
$$
and thus
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
$$
NOTE
At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with
$$
v = frac{ds}{dt} = f(t,C_1)
$$
obtaining after integration
$$
s(t) = g(t,C_1,C_2)
$$
anyway I would suggest the numerical approach.
$endgroup$
From
$$
- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
$$
we get
$$
frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
$$
now
being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have
$$
frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
$$
giving after integration
$$
frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
$$
or
$$
(v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
(v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
$$
or
$$
(v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
$$
Adding constants for readability:
$$
(v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
$$
now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have
$$
(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
$$
and thus
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
$$
NOTE
At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with
$$
v = frac{ds}{dt} = f(t,C_1)
$$
obtaining after integration
$$
s(t) = g(t,C_1,C_2)
$$
anyway I would suggest the numerical approach.
edited Dec 24 '18 at 19:58
answered Dec 22 '18 at 17:16
CesareoCesareo
9,2413517
9,2413517
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
1
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
|
show 3 more comments
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
1
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
I added a more compact version of your last formula (last before switching to space... I am looking for time).
$endgroup$
– jumpjack
Dec 22 '18 at 20:26
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
$endgroup$
– jumpjack
Dec 22 '18 at 20:37
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
Can I calculate C0 and C1 by knowing v_start and v_end?
$endgroup$
– jumpjack
Dec 22 '18 at 21:13
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
$begingroup$
@jumpjack Introduced the $t_f$ calculation.
$endgroup$
– Cesareo
Dec 22 '18 at 22:24
1
1
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
$begingroup$
@jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
$endgroup$
– Cesareo
Dec 24 '18 at 19:34
|
show 3 more comments
$begingroup$
Short answer
$$
t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
- $alpha = v_1(v_2-v_3)$
- $beta = v_2(v_3-v_1) $
- $gamma = v_3(v_1-v_2)$
- $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$
v1, v2 and v3 are the roots of:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
$K_1 = 0.5 * 1.225 * Cd * A $
1.225 = air density g/m3
$C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)
A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)
$K_2 = m * 9.81 * C_{rr} $
m = mass of vehicle in kg
9.81 = gravitational acceleration m/s2
$C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)
$ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $
$ u = frac{P}{rho C_dA} $
$v= frac{2mgC_{rr}}{3 rho C_dA}$
Generic final speed:
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.
Demonstration
Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:
$ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $
and sorting by power:
$ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $
Separating t and v:
$ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $
Mirroring:
$ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$
So we can now integrate on both sides
$int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$
$ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$
Lower factor can be written as:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$
Hence we can write:
$ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $
getting (source):
$$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$
Replacing with some constants for readability:
$ alpha = v_1 (v_2 - v_3) $
$ beta = v_2 (v_3 - v_1)$
$ gamma = v_3 (v_1 - v_2)$
$ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $
$$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$
or
$$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$
or
$$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$
Being:
$a*ln(b) = ln (b^a) $
we can then rewrite in this form:
$$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$
Then we can transform into:
$$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$
But this can be split into:
$$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$
which means:
$$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$
Bringing C1 to left:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
Applying logarithm again:
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$
and finally:
$$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$
We need to calculate C1 value. This can be done considering initial conditions:
t=0, v=0
Putting these values in previous equation:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
we get:
$$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$
$$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$
$$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$
This means that, for final conditions tf = unknown and vf = known we have:
(1) $
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$
V1, V2, V3 calculation
Now we only need v1, v2 and v3,which are the solutions of the equation:
$-K_1v^3 - K_2 v + P= 0$
Adding "missing" coefficient:
$-K_1v^3 + 0 v^2- K_2 v + P= 0$
This is a 3rd grade equation, whose solutions can be determined as follows:
It can be expressed in the form of
$ax^3 + bx^2 + cx + d = 0$
being:
- a = $-K_1 = - 0.5 rho C_dA$
- b = 0
- c = $-K_2 = -mgC_{rr}$
d = P
Solutions are (source):
$ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $
where (considering b=0)
$p = frac{-b}{3a} = 0 $
$q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$
$r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$
$s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Shortly:
$q = frac{P_{ower}}{rho C_dA}$
$s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Due to p = 0 (as b=0):
$ x = sqrt[3]{q + s} + sqrt[3]{q - s} $
replacing:
$ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $
This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.
$endgroup$
add a comment |
$begingroup$
Short answer
$$
t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
- $alpha = v_1(v_2-v_3)$
- $beta = v_2(v_3-v_1) $
- $gamma = v_3(v_1-v_2)$
- $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$
v1, v2 and v3 are the roots of:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
$K_1 = 0.5 * 1.225 * Cd * A $
1.225 = air density g/m3
$C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)
A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)
$K_2 = m * 9.81 * C_{rr} $
m = mass of vehicle in kg
9.81 = gravitational acceleration m/s2
$C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)
$ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $
$ u = frac{P}{rho C_dA} $
$v= frac{2mgC_{rr}}{3 rho C_dA}$
Generic final speed:
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.
Demonstration
Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:
$ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $
and sorting by power:
$ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $
Separating t and v:
$ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $
Mirroring:
$ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$
So we can now integrate on both sides
$int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$
$ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$
Lower factor can be written as:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$
Hence we can write:
$ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $
getting (source):
$$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$
Replacing with some constants for readability:
$ alpha = v_1 (v_2 - v_3) $
$ beta = v_2 (v_3 - v_1)$
$ gamma = v_3 (v_1 - v_2)$
$ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $
$$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$
or
$$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$
or
$$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$
Being:
$a*ln(b) = ln (b^a) $
we can then rewrite in this form:
$$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$
Then we can transform into:
$$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$
But this can be split into:
$$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$
which means:
$$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$
Bringing C1 to left:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
Applying logarithm again:
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$
and finally:
$$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$
We need to calculate C1 value. This can be done considering initial conditions:
t=0, v=0
Putting these values in previous equation:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
we get:
$$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$
$$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$
$$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$
This means that, for final conditions tf = unknown and vf = known we have:
(1) $
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$
V1, V2, V3 calculation
Now we only need v1, v2 and v3,which are the solutions of the equation:
$-K_1v^3 - K_2 v + P= 0$
Adding "missing" coefficient:
$-K_1v^3 + 0 v^2- K_2 v + P= 0$
This is a 3rd grade equation, whose solutions can be determined as follows:
It can be expressed in the form of
$ax^3 + bx^2 + cx + d = 0$
being:
- a = $-K_1 = - 0.5 rho C_dA$
- b = 0
- c = $-K_2 = -mgC_{rr}$
d = P
Solutions are (source):
$ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $
where (considering b=0)
$p = frac{-b}{3a} = 0 $
$q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$
$r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$
$s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Shortly:
$q = frac{P_{ower}}{rho C_dA}$
$s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Due to p = 0 (as b=0):
$ x = sqrt[3]{q + s} + sqrt[3]{q - s} $
replacing:
$ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $
This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.
$endgroup$
add a comment |
$begingroup$
Short answer
$$
t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
- $alpha = v_1(v_2-v_3)$
- $beta = v_2(v_3-v_1) $
- $gamma = v_3(v_1-v_2)$
- $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$
v1, v2 and v3 are the roots of:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
$K_1 = 0.5 * 1.225 * Cd * A $
1.225 = air density g/m3
$C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)
A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)
$K_2 = m * 9.81 * C_{rr} $
m = mass of vehicle in kg
9.81 = gravitational acceleration m/s2
$C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)
$ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $
$ u = frac{P}{rho C_dA} $
$v= frac{2mgC_{rr}}{3 rho C_dA}$
Generic final speed:
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.
Demonstration
Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:
$ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $
and sorting by power:
$ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $
Separating t and v:
$ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $
Mirroring:
$ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$
So we can now integrate on both sides
$int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$
$ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$
Lower factor can be written as:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$
Hence we can write:
$ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $
getting (source):
$$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$
Replacing with some constants for readability:
$ alpha = v_1 (v_2 - v_3) $
$ beta = v_2 (v_3 - v_1)$
$ gamma = v_3 (v_1 - v_2)$
$ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $
$$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$
or
$$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$
or
$$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$
Being:
$a*ln(b) = ln (b^a) $
we can then rewrite in this form:
$$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$
Then we can transform into:
$$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$
But this can be split into:
$$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$
which means:
$$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$
Bringing C1 to left:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
Applying logarithm again:
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$
and finally:
$$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$
We need to calculate C1 value. This can be done considering initial conditions:
t=0, v=0
Putting these values in previous equation:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
we get:
$$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$
$$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$
$$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$
This means that, for final conditions tf = unknown and vf = known we have:
(1) $
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$
V1, V2, V3 calculation
Now we only need v1, v2 and v3,which are the solutions of the equation:
$-K_1v^3 - K_2 v + P= 0$
Adding "missing" coefficient:
$-K_1v^3 + 0 v^2- K_2 v + P= 0$
This is a 3rd grade equation, whose solutions can be determined as follows:
It can be expressed in the form of
$ax^3 + bx^2 + cx + d = 0$
being:
- a = $-K_1 = - 0.5 rho C_dA$
- b = 0
- c = $-K_2 = -mgC_{rr}$
d = P
Solutions are (source):
$ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $
where (considering b=0)
$p = frac{-b}{3a} = 0 $
$q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$
$r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$
$s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Shortly:
$q = frac{P_{ower}}{rho C_dA}$
$s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Due to p = 0 (as b=0):
$ x = sqrt[3]{q + s} + sqrt[3]{q - s} $
replacing:
$ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $
This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.
$endgroup$
Short answer
$$
t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
- $alpha = v_1(v_2-v_3)$
- $beta = v_2(v_3-v_1) $
- $gamma = v_3(v_1-v_2)$
- $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$
v1, v2 and v3 are the roots of:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
$K_1 = 0.5 * 1.225 * Cd * A $
1.225 = air density g/m3
$C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)
A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)
$K_2 = m * 9.81 * C_{rr} $
m = mass of vehicle in kg
9.81 = gravitational acceleration m/s2
$C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)
$ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $
$ u = frac{P}{rho C_dA} $
$v= frac{2mgC_{rr}}{3 rho C_dA}$
Generic final speed:
$$
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$$
Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.
Demonstration
Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:
$ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $
and sorting by power:
$ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $
Separating t and v:
$ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $
Mirroring:
$ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$
So we can now integrate on both sides
$int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$
$ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$
Lower factor can be written as:
$ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $
being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$
Hence we can write:
$ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $
getting (source):
$$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$
Replacing with some constants for readability:
$ alpha = v_1 (v_2 - v_3) $
$ beta = v_2 (v_3 - v_1)$
$ gamma = v_3 (v_1 - v_2)$
$ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $
$$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$
or
$$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$
or
$$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$
Being:
$a*ln(b) = ln (b^a) $
we can then rewrite in this form:
$$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$
Then we can transform into:
$$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$
But this can be split into:
$$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$
which means:
$$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$
Bringing C1 to left:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
Applying logarithm again:
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$
$$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$
and finally:
$$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$
We need to calculate C1 value. This can be done considering initial conditions:
t=0, v=0
Putting these values in previous equation:
$$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$
we get:
$$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$
$$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$
$$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$
This means that, for final conditions tf = unknown and vf = known we have:
(1) $
t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
$
V1, V2, V3 calculation
Now we only need v1, v2 and v3,which are the solutions of the equation:
$-K_1v^3 - K_2 v + P= 0$
Adding "missing" coefficient:
$-K_1v^3 + 0 v^2- K_2 v + P= 0$
This is a 3rd grade equation, whose solutions can be determined as follows:
It can be expressed in the form of
$ax^3 + bx^2 + cx + d = 0$
being:
- a = $-K_1 = - 0.5 rho C_dA$
- b = 0
- c = $-K_2 = -mgC_{rr}$
d = P
Solutions are (source):
$ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $
where (considering b=0)
$p = frac{-b}{3a} = 0 $
$q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$
$r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$
$s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Shortly:
$q = frac{P_{ower}}{rho C_dA}$
$s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $
Due to p = 0 (as b=0):
$ x = sqrt[3]{q + s} + sqrt[3]{q - s} $
replacing:
$ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $
This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.
edited Dec 25 '18 at 10:44
answered Dec 23 '18 at 18:12
jumpjackjumpjack
1226
1226
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049621%2fcalculating-time-to-65mph-for-a-car-considering-air-drag%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown