Calculating time-to-65mph for a car considering air drag












0












$begingroup$


Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.



I know that the forces acting on the car are:



1) $F_e = frac {P_e}{v}$



being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.



2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $




  • rho = air denisty = 1.2 g/m3

  • Cd = air drag coefficient = 0.3

  • A = frontal area = 2.2 m2

  • m = mass 1000 kg

  • g = 9.18 m/s2

  • Crr = wheels drag = 0.01


So the total force is:



Ft = Fe - Fd



This is of course = m * dv/dt :



$F_t = mfrac{dv}{dt}$



$F_e - F_d = mfrac{dv}{dt}$



$frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$



grouping constants and sorting by power:



$- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$



Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...



Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.



    I know that the forces acting on the car are:



    1) $F_e = frac {P_e}{v}$



    being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.



    2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $




    • rho = air denisty = 1.2 g/m3

    • Cd = air drag coefficient = 0.3

    • A = frontal area = 2.2 m2

    • m = mass 1000 kg

    • g = 9.18 m/s2

    • Crr = wheels drag = 0.01


    So the total force is:



    Ft = Fe - Fd



    This is of course = m * dv/dt :



    $F_t = mfrac{dv}{dt}$



    $F_e - F_d = mfrac{dv}{dt}$



    $frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$



    grouping constants and sorting by power:



    $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$



    Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...



    Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.



      I know that the forces acting on the car are:



      1) $F_e = frac {P_e}{v}$



      being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.



      2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $




      • rho = air denisty = 1.2 g/m3

      • Cd = air drag coefficient = 0.3

      • A = frontal area = 2.2 m2

      • m = mass 1000 kg

      • g = 9.18 m/s2

      • Crr = wheels drag = 0.01


      So the total force is:



      Ft = Fe - Fd



      This is of course = m * dv/dt :



      $F_t = mfrac{dv}{dt}$



      $F_e - F_d = mfrac{dv}{dt}$



      $frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$



      grouping constants and sorting by power:



      $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$



      Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...



      Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.










      share|cite|improve this question









      $endgroup$




      Starting from this question I am trying figuring out the equation to calculate the needed time to get from 0 to 65 mph for a car, without using multiple excel formulas across cells as I've done till now.



      I know that the forces acting on the car are:



      1) $F_e = frac {P_e}{v}$



      being Pe = Power of engine in W and v of course speed in m/s ; let's assume this power is constant at any speed.



      2) $F_d = 0.5rho C_dAv^2-mgC_{rr} $




      • rho = air denisty = 1.2 g/m3

      • Cd = air drag coefficient = 0.3

      • A = frontal area = 2.2 m2

      • m = mass 1000 kg

      • g = 9.18 m/s2

      • Crr = wheels drag = 0.01


      So the total force is:



      Ft = Fe - Fd



      This is of course = m * dv/dt :



      $F_t = mfrac{dv}{dt}$



      $F_e - F_d = mfrac{dv}{dt}$



      $frac{P}{v} - 0.5 rho C_d A v^2 - mgC_{rr} = mfrac{dv}{dt}$



      grouping constants and sorting by power:



      $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$



      Now I don't know where to go from here, I can't get how to separate t and v with so many terms, powers and constants...



      Start condition is v=0; end condition is v = 27.8; what I'm trying to get is t.







      differential






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 22 '18 at 16:39









      jumpjackjumpjack

      1226




      1226






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          From



          $$
          - K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
          $$



          we get



          $$
          frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
          $$



          now



          being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have



          $$
          frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
          $$



          giving after integration



          $$
          frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
          $$



          or



          $$
          (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
          (v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
          $$



          or



          $$
          (v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
          $$



          Adding constants for readability:



          $$
          (v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
          $$



          now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have



          $$
          (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
          (v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
          $$



          and thus



          $$
          t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
          $$



          NOTE



          At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with



          $$
          v = frac{ds}{dt} = f(t,C_1)
          $$



          obtaining after integration



          $$
          s(t) = g(t,C_1,C_2)
          $$



          anyway I would suggest the numerical approach.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I added a more compact version of your last formula (last before switching to space... I am looking for time).
            $endgroup$
            – jumpjack
            Dec 22 '18 at 20:26










          • $begingroup$
            also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
            $endgroup$
            – jumpjack
            Dec 22 '18 at 20:37










          • $begingroup$
            Can I calculate C0 and C1 by knowing v_start and v_end?
            $endgroup$
            – jumpjack
            Dec 22 '18 at 21:13












          • $begingroup$
            @jumpjack Introduced the $t_f$ calculation.
            $endgroup$
            – Cesareo
            Dec 22 '18 at 22:24






          • 1




            $begingroup$
            @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
            $endgroup$
            – Cesareo
            Dec 24 '18 at 19:34



















          0












          $begingroup$

          Short answer



          $$
          t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
          $$




          • $alpha = v_1(v_2-v_3)$

          • $beta = v_2(v_3-v_1) $

          • $gamma = v_3(v_1-v_2)$

          • $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$


          v1, v2 and v3 are the roots of:



          $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $





          • $K_1 = 0.5 * 1.225 * Cd * A $




            • 1.225 = air density g/m3


            • $C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)


            • A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)





          • $K_2 = m * 9.81 * C_{rr} $




            • m = mass of vehicle in kg


            • 9.81 = gravitational acceleration m/s2


            • $C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)





          $ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $



          $ u = frac{P}{rho C_dA} $



          $v= frac{2mgC_{rr}}{3 rho C_dA}$



          Generic final speed:



          $$
          t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
          $$



          Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.





          Demonstration



          Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:



          $ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $



          and sorting by power:



          $ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $



          Separating t and v:



          $ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $



          Mirroring:



          $ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$



          So we can now integrate on both sides



          $int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$



          $ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$



          Lower factor can be written as:



          $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $



          being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$



          Hence we can write:



          $ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $



          getting (source):



          $$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$



          Replacing with some constants for readability:




          • $ alpha = v_1 (v_2 - v_3) $


          • $ beta = v_2 (v_3 - v_1)$


          • $ gamma = v_3 (v_1 - v_2)$


          • $ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $



          $$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$



          or



          $$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$



          or



          $$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$



          Being:



          $a*ln(b) = ln (b^a) $



          we can then rewrite in this form:



          $$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$



          Then we can transform into:



          $$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$



          But this can be split into:



          $$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$



          which means:



          $$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$



          Bringing C1 to left:



          $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



          Applying logarithm again:



          $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$



          $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$



          and finally:



          $$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$



          We need to calculate C1 value. This can be done considering initial conditions:



          t=0, v=0



          Putting these values in previous equation:



          $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



          we get:



          $$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$



          $$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$



          $$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$



          This means that, for final conditions tf = unknown and vf = known we have:



          (1) $
          t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
          $



          V1, V2, V3 calculation



          Now we only need v1, v2 and v3,which are the solutions of the equation:



          $-K_1v^3 - K_2 v + P= 0$



          Adding "missing" coefficient:



          $-K_1v^3 + 0 v^2- K_2 v + P= 0$



          This is a 3rd grade equation, whose solutions can be determined as follows:



          It can be expressed in the form of



          $ax^3 + bx^2 + cx + d = 0$



          being:




          • a = $-K_1 = - 0.5 rho C_dA$

          • b = 0

          • c = $-K_2 = -mgC_{rr}$


          • d = P



            Solutions are (source):




          $ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $



          where (considering b=0)



          $p = frac{-b}{3a} = 0 $



          $q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$



          $r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$



          $s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



          Shortly:



          $q = frac{P_{ower}}{rho C_dA}$



          $s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



          Due to p = 0 (as b=0):



          $ x = sqrt[3]{q + s} + sqrt[3]{q - s} $



          replacing:



          $ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $



          This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049621%2fcalculating-time-to-65mph-for-a-car-considering-air-drag%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            From



            $$
            - K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
            $$



            we get



            $$
            frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
            $$



            now



            being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have



            $$
            frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
            $$



            giving after integration



            $$
            frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
            $$



            or



            $$
            (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
            (v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
            $$



            or



            $$
            (v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
            $$



            Adding constants for readability:



            $$
            (v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
            $$



            now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have



            $$
            (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
            (v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
            $$



            and thus



            $$
            t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
            $$



            NOTE



            At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with



            $$
            v = frac{ds}{dt} = f(t,C_1)
            $$



            obtaining after integration



            $$
            s(t) = g(t,C_1,C_2)
            $$



            anyway I would suggest the numerical approach.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I added a more compact version of your last formula (last before switching to space... I am looking for time).
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:26










            • $begingroup$
              also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:37










            • $begingroup$
              Can I calculate C0 and C1 by knowing v_start and v_end?
              $endgroup$
              – jumpjack
              Dec 22 '18 at 21:13












            • $begingroup$
              @jumpjack Introduced the $t_f$ calculation.
              $endgroup$
              – Cesareo
              Dec 22 '18 at 22:24






            • 1




              $begingroup$
              @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
              $endgroup$
              – Cesareo
              Dec 24 '18 at 19:34
















            1












            $begingroup$

            From



            $$
            - K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
            $$



            we get



            $$
            frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
            $$



            now



            being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have



            $$
            frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
            $$



            giving after integration



            $$
            frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
            $$



            or



            $$
            (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
            (v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
            $$



            or



            $$
            (v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
            $$



            Adding constants for readability:



            $$
            (v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
            $$



            now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have



            $$
            (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
            (v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
            $$



            and thus



            $$
            t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
            $$



            NOTE



            At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with



            $$
            v = frac{ds}{dt} = f(t,C_1)
            $$



            obtaining after integration



            $$
            s(t) = g(t,C_1,C_2)
            $$



            anyway I would suggest the numerical approach.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I added a more compact version of your last formula (last before switching to space... I am looking for time).
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:26










            • $begingroup$
              also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:37










            • $begingroup$
              Can I calculate C0 and C1 by knowing v_start and v_end?
              $endgroup$
              – jumpjack
              Dec 22 '18 at 21:13












            • $begingroup$
              @jumpjack Introduced the $t_f$ calculation.
              $endgroup$
              – Cesareo
              Dec 22 '18 at 22:24






            • 1




              $begingroup$
              @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
              $endgroup$
              – Cesareo
              Dec 24 '18 at 19:34














            1












            1








            1





            $begingroup$

            From



            $$
            - K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
            $$



            we get



            $$
            frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
            $$



            now



            being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have



            $$
            frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
            $$



            giving after integration



            $$
            frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
            $$



            or



            $$
            (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
            (v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
            $$



            or



            $$
            (v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
            $$



            Adding constants for readability:



            $$
            (v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
            $$



            now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have



            $$
            (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
            (v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
            $$



            and thus



            $$
            t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
            $$



            NOTE



            At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with



            $$
            v = frac{ds}{dt} = f(t,C_1)
            $$



            obtaining after integration



            $$
            s(t) = g(t,C_1,C_2)
            $$



            anyway I would suggest the numerical approach.






            share|cite|improve this answer











            $endgroup$



            From



            $$
            - K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}
            $$



            we get



            $$
            frac{m v dv}{P- K_1 v^3 - K_2 v} = dt
            $$



            now



            being $v_1, v_2 ,v_3$ the three roots of $P-K_1v^3-K_2 v = 0$ we have



            $$
            frac{m v dv}{(v-v_1)(v-v_2)(v-v_3)} = dt
            $$



            giving after integration



            $$
            frac{m (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln(v-v_3))}{(v_1-v_2) (v_1-v_3) (v_2-v_3)} = t + C_0
            $$



            or



            $$
            (v_1 (v_2-v_3) ln (v-v_1)+v_2 (v_3-v_1) ln (v-v_2)+v_3 (v_1-v_2) ln
            (v-v_3)) = frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}(t+C_0)
            $$



            or



            $$
            (v-v_1)^{v_1(v_2-v_3)}(v-v_2)^{v_2(v_3-v_1)}(v-v_3)^{v_3(v_1-v_2)} = C_1e^{frac{(v_1-v_2) (v_1-v_3) (v_2-v_3)}{m}t}
            $$



            Adding constants for readability:



            $$
            (v-v_1)^{alpha}(v-v_2)^{beta}(v-v_3)^{gamma} = C_1e^{frac{delta}{m}t}
            $$



            now for $t = 0$ assuming $v = 0$ and at $t = t_f$ with $v_f = 27.8$ we have



            $$
            (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} = C_1\
            (v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma} = C_1e^{frac{delta}{m}t_f}
            $$



            and thus



            $$
            t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma}}right)
            $$



            NOTE



            At this point supposing we have the inversion $v = f(t, C_1)$ we could follow with



            $$
            v = frac{ds}{dt} = f(t,C_1)
            $$



            obtaining after integration



            $$
            s(t) = g(t,C_1,C_2)
            $$



            anyway I would suggest the numerical approach.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 24 '18 at 19:58

























            answered Dec 22 '18 at 17:16









            CesareoCesareo

            9,2413517




            9,2413517












            • $begingroup$
              I added a more compact version of your last formula (last before switching to space... I am looking for time).
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:26










            • $begingroup$
              also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:37










            • $begingroup$
              Can I calculate C0 and C1 by knowing v_start and v_end?
              $endgroup$
              – jumpjack
              Dec 22 '18 at 21:13












            • $begingroup$
              @jumpjack Introduced the $t_f$ calculation.
              $endgroup$
              – Cesareo
              Dec 22 '18 at 22:24






            • 1




              $begingroup$
              @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
              $endgroup$
              – Cesareo
              Dec 24 '18 at 19:34


















            • $begingroup$
              I added a more compact version of your last formula (last before switching to space... I am looking for time).
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:26










            • $begingroup$
              also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
              $endgroup$
              – jumpjack
              Dec 22 '18 at 20:37










            • $begingroup$
              Can I calculate C0 and C1 by knowing v_start and v_end?
              $endgroup$
              – jumpjack
              Dec 22 '18 at 21:13












            • $begingroup$
              @jumpjack Introduced the $t_f$ calculation.
              $endgroup$
              – Cesareo
              Dec 22 '18 at 22:24






            • 1




              $begingroup$
              @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
              $endgroup$
              – Cesareo
              Dec 24 '18 at 19:34
















            $begingroup$
            I added a more compact version of your last formula (last before switching to space... I am looking for time).
            $endgroup$
            – jumpjack
            Dec 22 '18 at 20:26




            $begingroup$
            I added a more compact version of your last formula (last before switching to space... I am looking for time).
            $endgroup$
            – jumpjack
            Dec 22 '18 at 20:26












            $begingroup$
            also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
            $endgroup$
            – jumpjack
            Dec 22 '18 at 20:37




            $begingroup$
            also added further steps to finally get t. I hope this is correct. I guess now I'll have to add to this these crazy formulas to get "t"! math.vanderbilt.edu/schectex/courses/cubic
            $endgroup$
            – jumpjack
            Dec 22 '18 at 20:37












            $begingroup$
            Can I calculate C0 and C1 by knowing v_start and v_end?
            $endgroup$
            – jumpjack
            Dec 22 '18 at 21:13






            $begingroup$
            Can I calculate C0 and C1 by knowing v_start and v_end?
            $endgroup$
            – jumpjack
            Dec 22 '18 at 21:13














            $begingroup$
            @jumpjack Introduced the $t_f$ calculation.
            $endgroup$
            – Cesareo
            Dec 22 '18 at 22:24




            $begingroup$
            @jumpjack Introduced the $t_f$ calculation.
            $endgroup$
            – Cesareo
            Dec 22 '18 at 22:24




            1




            1




            $begingroup$
            @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
            $endgroup$
            – Cesareo
            Dec 24 '18 at 19:34




            $begingroup$
            @jumpjack Pretty good! The constant $C_1$ can be computed as $C_1 = (-v_1)^{alpha}(-v_2)^{beta}(-v_3)^{gamma} $ as corrected in the post.
            $endgroup$
            – Cesareo
            Dec 24 '18 at 19:34











            0












            $begingroup$

            Short answer



            $$
            t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
            $$




            • $alpha = v_1(v_2-v_3)$

            • $beta = v_2(v_3-v_1) $

            • $gamma = v_3(v_1-v_2)$

            • $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$


            v1, v2 and v3 are the roots of:



            $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $





            • $K_1 = 0.5 * 1.225 * Cd * A $




              • 1.225 = air density g/m3


              • $C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)


              • A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)





            • $K_2 = m * 9.81 * C_{rr} $




              • m = mass of vehicle in kg


              • 9.81 = gravitational acceleration m/s2


              • $C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)





            $ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $



            $ u = frac{P}{rho C_dA} $



            $v= frac{2mgC_{rr}}{3 rho C_dA}$



            Generic final speed:



            $$
            t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
            $$



            Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.





            Demonstration



            Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:



            $ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $



            and sorting by power:



            $ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $



            Separating t and v:



            $ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $



            Mirroring:



            $ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$



            So we can now integrate on both sides



            $int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$



            $ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$



            Lower factor can be written as:



            $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $



            being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$



            Hence we can write:



            $ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $



            getting (source):



            $$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$



            Replacing with some constants for readability:




            • $ alpha = v_1 (v_2 - v_3) $


            • $ beta = v_2 (v_3 - v_1)$


            • $ gamma = v_3 (v_1 - v_2)$


            • $ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $



            $$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$



            or



            $$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$



            or



            $$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$



            Being:



            $a*ln(b) = ln (b^a) $



            we can then rewrite in this form:



            $$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$



            Then we can transform into:



            $$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$



            But this can be split into:



            $$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$



            which means:



            $$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$



            Bringing C1 to left:



            $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



            Applying logarithm again:



            $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$



            $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$



            and finally:



            $$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$



            We need to calculate C1 value. This can be done considering initial conditions:



            t=0, v=0



            Putting these values in previous equation:



            $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



            we get:



            $$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$



            $$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$



            $$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$



            This means that, for final conditions tf = unknown and vf = known we have:



            (1) $
            t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
            $



            V1, V2, V3 calculation



            Now we only need v1, v2 and v3,which are the solutions of the equation:



            $-K_1v^3 - K_2 v + P= 0$



            Adding "missing" coefficient:



            $-K_1v^3 + 0 v^2- K_2 v + P= 0$



            This is a 3rd grade equation, whose solutions can be determined as follows:



            It can be expressed in the form of



            $ax^3 + bx^2 + cx + d = 0$



            being:




            • a = $-K_1 = - 0.5 rho C_dA$

            • b = 0

            • c = $-K_2 = -mgC_{rr}$


            • d = P



              Solutions are (source):




            $ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $



            where (considering b=0)



            $p = frac{-b}{3a} = 0 $



            $q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$



            $r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$



            $s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



            Shortly:



            $q = frac{P_{ower}}{rho C_dA}$



            $s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



            Due to p = 0 (as b=0):



            $ x = sqrt[3]{q + s} + sqrt[3]{q - s} $



            replacing:



            $ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $



            This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Short answer



              $$
              t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
              $$




              • $alpha = v_1(v_2-v_3)$

              • $beta = v_2(v_3-v_1) $

              • $gamma = v_3(v_1-v_2)$

              • $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$


              v1, v2 and v3 are the roots of:



              $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $





              • $K_1 = 0.5 * 1.225 * Cd * A $




                • 1.225 = air density g/m3


                • $C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)


                • A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)





              • $K_2 = m * 9.81 * C_{rr} $




                • m = mass of vehicle in kg


                • 9.81 = gravitational acceleration m/s2


                • $C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)





              $ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $



              $ u = frac{P}{rho C_dA} $



              $v= frac{2mgC_{rr}}{3 rho C_dA}$



              Generic final speed:



              $$
              t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
              $$



              Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.





              Demonstration



              Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:



              $ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $



              and sorting by power:



              $ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $



              Separating t and v:



              $ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $



              Mirroring:



              $ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$



              So we can now integrate on both sides



              $int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$



              $ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$



              Lower factor can be written as:



              $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $



              being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$



              Hence we can write:



              $ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $



              getting (source):



              $$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$



              Replacing with some constants for readability:




              • $ alpha = v_1 (v_2 - v_3) $


              • $ beta = v_2 (v_3 - v_1)$


              • $ gamma = v_3 (v_1 - v_2)$


              • $ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $



              $$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$



              or



              $$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$



              or



              $$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$



              Being:



              $a*ln(b) = ln (b^a) $



              we can then rewrite in this form:



              $$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$



              Then we can transform into:



              $$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$



              But this can be split into:



              $$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$



              which means:



              $$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$



              Bringing C1 to left:



              $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



              Applying logarithm again:



              $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$



              $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$



              and finally:



              $$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$



              We need to calculate C1 value. This can be done considering initial conditions:



              t=0, v=0



              Putting these values in previous equation:



              $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



              we get:



              $$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$



              $$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$



              $$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$



              This means that, for final conditions tf = unknown and vf = known we have:



              (1) $
              t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
              $



              V1, V2, V3 calculation



              Now we only need v1, v2 and v3,which are the solutions of the equation:



              $-K_1v^3 - K_2 v + P= 0$



              Adding "missing" coefficient:



              $-K_1v^3 + 0 v^2- K_2 v + P= 0$



              This is a 3rd grade equation, whose solutions can be determined as follows:



              It can be expressed in the form of



              $ax^3 + bx^2 + cx + d = 0$



              being:




              • a = $-K_1 = - 0.5 rho C_dA$

              • b = 0

              • c = $-K_2 = -mgC_{rr}$


              • d = P



                Solutions are (source):




              $ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $



              where (considering b=0)



              $p = frac{-b}{3a} = 0 $



              $q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$



              $r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$



              $s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



              Shortly:



              $q = frac{P_{ower}}{rho C_dA}$



              $s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



              Due to p = 0 (as b=0):



              $ x = sqrt[3]{q + s} + sqrt[3]{q - s} $



              replacing:



              $ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $



              This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Short answer



                $$
                t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
                $$




                • $alpha = v_1(v_2-v_3)$

                • $beta = v_2(v_3-v_1) $

                • $gamma = v_3(v_1-v_2)$

                • $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$


                v1, v2 and v3 are the roots of:



                $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $





                • $K_1 = 0.5 * 1.225 * Cd * A $




                  • 1.225 = air density g/m3


                  • $C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)


                  • A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)





                • $K_2 = m * 9.81 * C_{rr} $




                  • m = mass of vehicle in kg


                  • 9.81 = gravitational acceleration m/s2


                  • $C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)





                $ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $



                $ u = frac{P}{rho C_dA} $



                $v= frac{2mgC_{rr}}{3 rho C_dA}$



                Generic final speed:



                $$
                t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
                $$



                Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.





                Demonstration



                Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:



                $ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $



                and sorting by power:



                $ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $



                Separating t and v:



                $ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $



                Mirroring:



                $ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$



                So we can now integrate on both sides



                $int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$



                $ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$



                Lower factor can be written as:



                $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $



                being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$



                Hence we can write:



                $ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $



                getting (source):



                $$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$



                Replacing with some constants for readability:




                • $ alpha = v_1 (v_2 - v_3) $


                • $ beta = v_2 (v_3 - v_1)$


                • $ gamma = v_3 (v_1 - v_2)$


                • $ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $



                $$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$



                or



                $$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$



                or



                $$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$



                Being:



                $a*ln(b) = ln (b^a) $



                we can then rewrite in this form:



                $$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$



                Then we can transform into:



                $$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$



                But this can be split into:



                $$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$



                which means:



                $$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$



                Bringing C1 to left:



                $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



                Applying logarithm again:



                $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$



                $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$



                and finally:



                $$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$



                We need to calculate C1 value. This can be done considering initial conditions:



                t=0, v=0



                Putting these values in previous equation:



                $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



                we get:



                $$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$



                $$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$



                $$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$



                This means that, for final conditions tf = unknown and vf = known we have:



                (1) $
                t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
                $



                V1, V2, V3 calculation



                Now we only need v1, v2 and v3,which are the solutions of the equation:



                $-K_1v^3 - K_2 v + P= 0$



                Adding "missing" coefficient:



                $-K_1v^3 + 0 v^2- K_2 v + P= 0$



                This is a 3rd grade equation, whose solutions can be determined as follows:



                It can be expressed in the form of



                $ax^3 + bx^2 + cx + d = 0$



                being:




                • a = $-K_1 = - 0.5 rho C_dA$

                • b = 0

                • c = $-K_2 = -mgC_{rr}$


                • d = P



                  Solutions are (source):




                $ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $



                where (considering b=0)



                $p = frac{-b}{3a} = 0 $



                $q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$



                $r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$



                $s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



                Shortly:



                $q = frac{P_{ower}}{rho C_dA}$



                $s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



                Due to p = 0 (as b=0):



                $ x = sqrt[3]{q + s} + sqrt[3]{q - s} $



                replacing:



                $ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $



                This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.






                share|cite|improve this answer











                $endgroup$



                Short answer



                $$
                t_{65mph} = frac{m}{delta}lnleft(frac{(27.8-v_1)^{alpha} * (27.8-v_2)^{beta} * (27.8-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
                $$




                • $alpha = v_1(v_2-v_3)$

                • $beta = v_2(v_3-v_1) $

                • $gamma = v_3(v_1-v_2)$

                • $delta = (v_1-v_2)(v_1-v_3)(v_2-v_3)$


                v1, v2 and v3 are the roots of:



                $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $





                • $K_1 = 0.5 * 1.225 * Cd * A $




                  • 1.225 = air density g/m3


                  • $C_d$ air drag coefficient (~0.3 for cars, ~0.8 for cycles)


                  • A = Frontal Area in $m^2$ (~2.2 for cars, ~0.8 for cycles)





                • $K_2 = m * 9.81 * C_{rr} $




                  • m = mass of vehicle in kg


                  • 9.81 = gravitational acceleration m/s2


                  • $C_{rr}$ = rolling drag coefficient (~0.01 in cars, ~0.005 for cycles)





                $ v_{1,2,3} = sqrt[3]{u + sqrt{u^2+v^3}} + sqrt[3]{u - sqrt{u^2+v^3}} $



                $ u = frac{P}{rho C_dA} $



                $v= frac{2mgC_{rr}}{3 rho C_dA}$



                Generic final speed:



                $$
                t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha} * (v_f-v_2)^{beta} * (v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
                $$



                Start time and start speed are assumed to be t=0, end time is $t_f$ and final speed is $v_f$.





                Demonstration



                Last equation in the question, $- K_1 v^2 + frac{P}{v} - K_2 = mfrac{dv}{dt}$ , can be also written as:



                $ - K_1 v^3 +P- K_2 v= mvfrac{dv}{dt} $



                and sorting by power:



                $ - K_1 v^3 - K_2 v + P= mvfrac{dv}{dt} $



                Separating t and v:



                $ dt= frac{mvdv}{- K_1 v^3 - K_2 v + P} $



                Mirroring:



                $ frac{mvdv}{- K_1 v^3 - K_2 v + P} = dt$



                So we can now integrate on both sides



                $int {frac{mv}{- K_1 v^3 - K_2 v + P}dv} = int dt$



                $ mint {frac{v}{- K_1 v^3 - K_2 v + P}dv} = int dt$



                Lower factor can be written as:



                $ - K_1 v^3 - K_2 v + P = (v-v_1)(v-v_2)(v-v_3) $



                being v1, v2 and v3 the roots of $ - K_1 v^3 - K_2 v + P$



                Hence we can write:



                $ mint {frac{v}{(v-v_1)(v-v_2)(v-v_3)}dv} = int dt $



                getting (source):



                $$ m frac{v_1 (v_2 - v_3) ln(v - v_1) + v_2 (v_3 - v_1) ln(v - v_2) + v_3 (v_1 - v_2) ln(v - v_3)}{(v_1 - v_2) (v_1 - v_3) (v_2 - v_3)} = t + C_0$$



                Replacing with some constants for readability:




                • $ alpha = v_1 (v_2 - v_3) $


                • $ beta = v_2 (v_3 - v_1)$


                • $ gamma = v_3 (v_1 - v_2)$


                • $ delta = (v_1 - v_2) (v_1 - v_3) (v_2 - v_3) $



                $$ m frac{alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)}{delta} = t + C_0 $$



                or



                $$ frac{m}{delta} (alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3)) = t + C_0 $$



                or



                $$ alpha ln(v - v_1) + beta ln(v - v_2) + gamma ln(v - v_3) = frac{delta}{m} (t + C_0) $$



                Being:



                $a*ln(b) = ln (b^a) $



                we can then rewrite in this form:



                $$ ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma = frac{delta}{m} (t + C_0) $$



                Then we can transform into:



                $$ e^{ln(v - v_1)^alpha + ln(v - v_2)^beta + ln(v - v_3)^gamma} = e^{frac{delta}{m} (t + C_0)} $$



                But this can be split into:



                $$ e^{ln(v - v_1)^alpha}* e^{ln(v - v_2)^beta} * e^{ln(v - v_3)^gamma} = e^{frac{delta}{m} t} * e^{C_0} $$



                which means:



                $$ (v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma = e^{frac{delta}{m} t} * C_1 $$



                Bringing C1 to left:



                $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



                Applying logarithm again:



                $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = ln{e^{frac{delta}{m} t}} $$



                $$ ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} = frac{delta}{m} t $$



                and finally:



                $$ t = frac{m}{delta} ln{frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1}} $$



                We need to calculate C1 value. This can be done considering initial conditions:



                t=0, v=0



                Putting these values in previous equation:



                $$ frac{(v - v_1)^alpha * (v - v_2)^beta * (v - v_3)^gamma}{C_1} = e^{frac{delta}{m} t} $$



                we get:



                $$ frac{(0 - v_1)^alpha * (0 - v_2)^beta * (0 - v_3)^gamma}{C_1} = e^{frac{delta}{m} 0}$$



                $$ frac{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma}{C_1} = e^0 $$



                $$ (-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma = C1 $$



                This means that, for final conditions tf = unknown and vf = known we have:



                (1) $
                t_f = frac{m}{delta}lnleft(frac{(v_f-v_1)^{alpha}(v_f-v_2)^{beta}(v_f-v_3)^{gamma}}{(-v_1)^alpha * (-v_2)^beta * (-v_3)^gamma }right)
                $



                V1, V2, V3 calculation



                Now we only need v1, v2 and v3,which are the solutions of the equation:



                $-K_1v^3 - K_2 v + P= 0$



                Adding "missing" coefficient:



                $-K_1v^3 + 0 v^2- K_2 v + P= 0$



                This is a 3rd grade equation, whose solutions can be determined as follows:



                It can be expressed in the form of



                $ax^3 + bx^2 + cx + d = 0$



                being:




                • a = $-K_1 = - 0.5 rho C_dA$

                • b = 0

                • c = $-K_2 = -mgC_{rr}$


                • d = P



                  Solutions are (source):




                $ x = sqrt[3]{q + sqrt{q^2 + (r-p^2)^3}} + sqrt[3]{q - sqrt{q^2 + (r-p^2)^3}} + p = sqrt[3]{q + s} + sqrt[3]{q - s} + p $



                where (considering b=0)



                $p = frac{-b}{3a} = 0 $



                $q = p^3 + frac{bc-3ad}{6a^2} = - frac{d}{2a} = - frac{P_{ower}}{2 (- 0.5 rho C_dA)} = frac{P_{ower}}{rho C_dA}$



                $r = frac{c}{3a} = frac{-mgC_{rr}}{3(- 0.5 rho C_dA)} = frac{2mgC_{rr}}{3 rho C_dA}$



                $s = sqrt{q^2+(r-p^2)^3} = sqrt{q^2+r^3} = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



                Shortly:



                $q = frac{P_{ower}}{rho C_dA}$



                $s = sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3} $



                Due to p = 0 (as b=0):



                $ x = sqrt[3]{q + s} + sqrt[3]{q - s} $



                replacing:



                $ x_{1,2,3} = sqrt[3]{frac{P_{ower}}{rho C_dA} + sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} + sqrt[3]{frac{P_{ower}}{rho C_dA} - sqrt{(frac{P_{ower}}{rho C_dA})^2+(frac{2mgC_{rr}}{3 rho C_dA})^3}} $



                This gives 3 values x1, x2 and x3 which must replace v1, v2 and v3 in the final equation (1) found before.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 25 '18 at 10:44

























                answered Dec 23 '18 at 18:12









                jumpjackjumpjack

                1226




                1226






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049621%2fcalculating-time-to-65mph-for-a-car-considering-air-drag%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix