Strengthening of Bernstein Inequality
up vote
1
down vote
favorite
Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
$|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
the Bernstein inequality:
$$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$
Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$
attempt: Following Probability and random processes by grimmett.
Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
$$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
hence
$$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:
$$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:
$$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$
We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:
$$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$
Not sure how to get the inequality asked for.
probability random-variables binomial-theorem
add a comment |
up vote
1
down vote
favorite
Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
$|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
the Bernstein inequality:
$$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$
Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$
attempt: Following Probability and random processes by grimmett.
Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
$$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
hence
$$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:
$$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:
$$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$
We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:
$$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$
Not sure how to get the inequality asked for.
probability random-variables binomial-theorem
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
$|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
the Bernstein inequality:
$$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$
Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$
attempt: Following Probability and random processes by grimmett.
Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
$$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
hence
$$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:
$$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:
$$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$
We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:
$$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$
Not sure how to get the inequality asked for.
probability random-variables binomial-theorem
Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
$|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
the Bernstein inequality:
$$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$
Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$
attempt: Following Probability and random processes by grimmett.
Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
$$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
hence
$$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:
$$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:
$$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$
We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:
$$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$
Not sure how to get the inequality asked for.
probability random-variables binomial-theorem
probability random-variables binomial-theorem
asked Nov 14 at 16:29
elcharlosmaster
1036
1036
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998474%2fstrengthening-of-bernstein-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown