Strengthening of Bernstein Inequality











up vote
1
down vote

favorite
1













Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
$|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
the Bernstein inequality:
$$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$



Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$




attempt: Following Probability and random processes by grimmett.



Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
$$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
hence
$$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:



$$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:



$$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$



We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:



$$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$



Not sure how to get the inequality asked for.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite
    1













    Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
    $|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
    the Bernstein inequality:
    $$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$



    Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$




    attempt: Following Probability and random processes by grimmett.



    Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
    $$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
    hence
    $$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
    where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:



    $$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
    By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:



    $$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$



    We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:



    $$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$



    Not sure how to get the inequality asked for.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1






      Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
      $|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
      the Bernstein inequality:
      $$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$



      Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$




      attempt: Following Probability and random processes by grimmett.



      Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
      $$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
      hence
      $$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
      where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:



      $$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
      By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:



      $$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$



      We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:



      $$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$



      Not sure how to get the inequality asked for.










      share|cite|improve this question














      Problem. Let $X_1, . . . , X_n$ be independent random variables such that $mathbf{E}(X_k) = 0$ and
      $|X_k| leq 1$ for $k = 1, . . . , n$. Let $X = X_1 + . . . + X_n$. Prove the following strengthening of
      the Bernstein inequality:
      $$P(X geq alpha n) leq left(frac{1}{(1 − alpha)^{1−alpha}cdot(1 + alpha)^{1+alpha}}right)^{n/2} quad text{ for all } 0 leq alpha < 1.$$



      Hint: Follow the proof of the Bernstein inequality, only do not use that $frac{e^t + e^{−t}}{2} leq e^{frac{t^2}{2}}$




      attempt: Following Probability and random processes by grimmett.



      Say $mathbf{P}(X_k)=p$. For small positive values of $epsilon$,
      $$mathbf{P}left(frac{1}{n}X_ngeq p +epsilonright)=Sigma_{k geq n(p+epsilon)} mathbf{P}(X_n=k) $$
      hence
      $$mathbf{P}(X_n=k)=Sigma_{k=m}^nbinom{n}{k}p^k(1-p)^{n-k}$$
      where $m=[n(p+epsilon)]$ the least integer not less than $n(p+epsilon)$. Let $lambda>0$ and note that $exp(lambda k) geq exp(lambda n (p+epsilon))$ if $k geq m$. Allowing $q=1-p.$ We have:



      $$begin{align} mathbf{P}left(frac{1}{n}X_n geq p+ epsilonright) leq & Sigma_{k=m}^n exp(lambda[k-n(p+epsilon)]) binom{n}{k} p^kq^{n-k} \ leq & exp{-lambda n epsilon}Sigma_{k=0}^n binom{n}{k} pexp{(lambda q)}^k(qexp{(-lambda p)})^{n-k} \ =& exp{(-lambda n epsilon)}(pexp{(lambda q)}+qexp{(-lambda p)})^nend{align}$$
      By the binomial theorem. By the fact that $e^x leq x+e^{x^2}$ for $x in mathbb{R}$ we get:



      $$begin{align} mathbf{P}left(frac{1}{n} X_n geq p +epsilonright) leq & exp{(-lambda n epsilon)}[pe^{lambda^2q^2}+qe^{lambda^2 p^2}]^n \ leq & e^{lambda^2 n-lambda n epsilon}.end{align}$$



      We can pick $lambda$ to minimize the RHS, $lambda =frac{1}{2}epsilon$, to get:



      $$mathbf{P}left(frac{1}{n}X_n geq p +epsilonright)leq e^{-frac{1}{4}nepsilon^2} quad text{ for } epsilon >0 $$



      Not sure how to get the inequality asked for.







      probability random-variables binomial-theorem






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 14 at 16:29









      elcharlosmaster

      1036




      1036



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998474%2fstrengthening-of-bernstein-inequality%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998474%2fstrengthening-of-bernstein-inequality%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How do I know what Microsoft account the skydrive app is syncing to?

          When does type information flow backwards in C++?

          Grease: Live!