Prove that $cond(A)ge frac{||A||}{||A-B||}$ for any induced matrix norm
$begingroup$
Prove that for any induced matrix norm:
$cond(A)ge frac{leftlVert A rightrVert}{leftlVert A-B rightrVert}$
Where $A$ is an invertible matrix, and $B$ is a singular matrix.
The condition number is: $cond(A) := leftlVert A rightrVert leftlVert A^{-1} rightrVert$
I have tried to prove that $leftlVert A rightrVert leftlVert A-B rightrVert ge 1$ ,but I'm not sure how to use the fact that $B$ is singular.
matrices norm condition-number matrix-norms
$endgroup$
add a comment |
$begingroup$
Prove that for any induced matrix norm:
$cond(A)ge frac{leftlVert A rightrVert}{leftlVert A-B rightrVert}$
Where $A$ is an invertible matrix, and $B$ is a singular matrix.
The condition number is: $cond(A) := leftlVert A rightrVert leftlVert A^{-1} rightrVert$
I have tried to prove that $leftlVert A rightrVert leftlVert A-B rightrVert ge 1$ ,but I'm not sure how to use the fact that $B$ is singular.
matrices norm condition-number matrix-norms
$endgroup$
add a comment |
$begingroup$
Prove that for any induced matrix norm:
$cond(A)ge frac{leftlVert A rightrVert}{leftlVert A-B rightrVert}$
Where $A$ is an invertible matrix, and $B$ is a singular matrix.
The condition number is: $cond(A) := leftlVert A rightrVert leftlVert A^{-1} rightrVert$
I have tried to prove that $leftlVert A rightrVert leftlVert A-B rightrVert ge 1$ ,but I'm not sure how to use the fact that $B$ is singular.
matrices norm condition-number matrix-norms
$endgroup$
Prove that for any induced matrix norm:
$cond(A)ge frac{leftlVert A rightrVert}{leftlVert A-B rightrVert}$
Where $A$ is an invertible matrix, and $B$ is a singular matrix.
The condition number is: $cond(A) := leftlVert A rightrVert leftlVert A^{-1} rightrVert$
I have tried to prove that $leftlVert A rightrVert leftlVert A-B rightrVert ge 1$ ,but I'm not sure how to use the fact that $B$ is singular.
matrices norm condition-number matrix-norms
matrices norm condition-number matrix-norms
edited Jan 18 at 21:16
Rodrigo de Azevedo
13.1k41960
13.1k41960
asked Jan 8 at 18:54
useruser
52
52
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $zin ker B$ be a unit vector. It is easy to see that
$$
|Az|=|Az-Bz|le |A-B|.
$$ On the other hand, we have
$$
1 = |z|=|A^{-1}Az|le |A^{-1}||Az|.
$$ Therefore, we have
$$
|A^{-1}|^{-1}le |Az|le |A-B|,
$$ and
$$
frac{|A|}{|A-B|}le|A||A^{-1}|=text{cond}(A)
$$ follows.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066577%2fprove-that-conda-ge-fracaa-b-for-any-induced-matrix-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $zin ker B$ be a unit vector. It is easy to see that
$$
|Az|=|Az-Bz|le |A-B|.
$$ On the other hand, we have
$$
1 = |z|=|A^{-1}Az|le |A^{-1}||Az|.
$$ Therefore, we have
$$
|A^{-1}|^{-1}le |Az|le |A-B|,
$$ and
$$
frac{|A|}{|A-B|}le|A||A^{-1}|=text{cond}(A)
$$ follows.
$endgroup$
add a comment |
$begingroup$
Let $zin ker B$ be a unit vector. It is easy to see that
$$
|Az|=|Az-Bz|le |A-B|.
$$ On the other hand, we have
$$
1 = |z|=|A^{-1}Az|le |A^{-1}||Az|.
$$ Therefore, we have
$$
|A^{-1}|^{-1}le |Az|le |A-B|,
$$ and
$$
frac{|A|}{|A-B|}le|A||A^{-1}|=text{cond}(A)
$$ follows.
$endgroup$
add a comment |
$begingroup$
Let $zin ker B$ be a unit vector. It is easy to see that
$$
|Az|=|Az-Bz|le |A-B|.
$$ On the other hand, we have
$$
1 = |z|=|A^{-1}Az|le |A^{-1}||Az|.
$$ Therefore, we have
$$
|A^{-1}|^{-1}le |Az|le |A-B|,
$$ and
$$
frac{|A|}{|A-B|}le|A||A^{-1}|=text{cond}(A)
$$ follows.
$endgroup$
Let $zin ker B$ be a unit vector. It is easy to see that
$$
|Az|=|Az-Bz|le |A-B|.
$$ On the other hand, we have
$$
1 = |z|=|A^{-1}Az|le |A^{-1}||Az|.
$$ Therefore, we have
$$
|A^{-1}|^{-1}le |Az|le |A-B|,
$$ and
$$
frac{|A|}{|A-B|}le|A||A^{-1}|=text{cond}(A)
$$ follows.
answered Jan 8 at 19:12
SongSong
18.6k21651
18.6k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066577%2fprove-that-conda-ge-fracaa-b-for-any-induced-matrix-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown