Error in proving Lagrange's Identity for $1+costheta+cdots+cos ntheta$












2












$begingroup$


Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.





My attempted "proof"




My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.




I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$



To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$



By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.



We see that $cos^2fractheta{2}=frac12(1+cos theta)$.



Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then



$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$

as needed.



Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.




Where's my mistake?











share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    How about this one? It's shorter and starts the same way.
    $endgroup$
    – rtybase
    Jan 8 at 21:08








  • 1




    $begingroup$
    @rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
    $endgroup$
    – Pascal's Wager
    Jan 8 at 21:43
















2












$begingroup$


Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.





My attempted "proof"




My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.




I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$



To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$



By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.



We see that $cos^2fractheta{2}=frac12(1+cos theta)$.



Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then



$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$

as needed.



Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.




Where's my mistake?











share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    How about this one? It's shorter and starts the same way.
    $endgroup$
    – rtybase
    Jan 8 at 21:08








  • 1




    $begingroup$
    @rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
    $endgroup$
    – Pascal's Wager
    Jan 8 at 21:43














2












2








2





$begingroup$


Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.





My attempted "proof"




My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.




I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$



To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$



By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.



We see that $cos^2fractheta{2}=frac12(1+cos theta)$.



Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then



$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$

as needed.



Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.




Where's my mistake?











share|cite|improve this question











$endgroup$




Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.





My attempted "proof"




My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.




I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$



To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$



By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.



We see that $cos^2fractheta{2}=frac12(1+cos theta)$.



Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then



$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$

as needed.



Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.




Where's my mistake?








complex-analysis trigonometry proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 8 at 19:37









Blue

49.7k870158




49.7k870158










asked Jan 8 at 18:50









Pascal's WagerPascal's Wager

381315




381315








  • 2




    $begingroup$
    How about this one? It's shorter and starts the same way.
    $endgroup$
    – rtybase
    Jan 8 at 21:08








  • 1




    $begingroup$
    @rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
    $endgroup$
    – Pascal's Wager
    Jan 8 at 21:43














  • 2




    $begingroup$
    How about this one? It's shorter and starts the same way.
    $endgroup$
    – rtybase
    Jan 8 at 21:08








  • 1




    $begingroup$
    @rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
    $endgroup$
    – Pascal's Wager
    Jan 8 at 21:43








2




2




$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08






$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08






1




1




$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43




$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43










0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066571%2ferror-in-proving-lagranges-identity-for-1-cos-theta-cdots-cos-n-theta%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066571%2ferror-in-proving-lagranges-identity-for-1-cos-theta-cdots-cos-n-theta%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix