Error in proving Lagrange's Identity for $1+costheta+cdots+cos ntheta$
$begingroup$
Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.
My attempted "proof"
My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.
I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$
To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$
By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.
We see that $cos^2fractheta{2}=frac12(1+cos theta)$.
Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then
$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$
as needed.
Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.
Where's my mistake?
complex-analysis trigonometry proof-verification
$endgroup$
add a comment |
$begingroup$
Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.
My attempted "proof"
My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.
I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$
To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$
By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.
We see that $cos^2fractheta{2}=frac12(1+cos theta)$.
Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then
$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$
as needed.
Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.
Where's my mistake?
complex-analysis trigonometry proof-verification
$endgroup$
2
$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08
1
$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43
add a comment |
$begingroup$
Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.
My attempted "proof"
My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.
I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$
To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$
By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.
We see that $cos^2fractheta{2}=frac12(1+cos theta)$.
Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then
$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$
as needed.
Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.
Where's my mistake?
complex-analysis trigonometry proof-verification
$endgroup$
Note: I was originally trying essentially to prove the same thing as this Finalising proof of Lagrange's Trig Identity. However, I do not consider my question to be a duplicate. I am looking for someone to point out my mistake in my "proof," not to prove it for
me.
My attempted "proof"
My goal was to show
$$1+costheta+cdots+cos ntheta= frac12+frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}$$ when $0<theta<2 pi$.
I see that
$$begin{align}LHS
&= Releft(frac {1-e^{i(n+1)theta}} {1-e^{itheta}}right) tag{1}\[4pt]
&= frac {(costheta-1)(cos((n+1)theta)-1)+sin((n+1)theta)sintheta} {(costheta-1)^2+sin^2theta} tag{2}\[4pt]
&=frac{(costheta-1)(cos ntheta cos theta-sin ntheta sintheta-1)+(sin ntheta costheta + cos ntheta sintheta)sintheta} {2-2costheta} tag{3} \[4pt]
&= frac {cos ntheta-costheta-cos ntheta costheta +sin ntheta sintheta +1} {2-2costheta} tag{4}\[4pt]
&=frac12+frac12cos ntheta+ frac{sin ntheta sintheta} {2-2costheta} tag{5}
end{align}$$
To finish proof, it suffices to show that
$$frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}=frac12cos ntheta+frac{sin ntheta sintheta} {2-2costheta} tag{6}$$
By our restriction on $theta$, we must have $sinfractheta2=sqrt{frac12(1-cos theta)}$.
We see that $cos^2fractheta{2}=frac12(1+cos theta)$.
Case 1: Suppose $cosfrac{theta}{2}=sqrt{frac12(1+cos theta)}$. Then
$$begin{align}
frac {sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}
&= frac{sin ntheta cosfrac{theta}{2}+cos ntheta sinfrac{theta}{2}} {2sinfrac{theta}{2}} tag{7} \[4pt]
&=frac{cos ntheta}{2}+frac {sin n theta sqrt {1+cos theta}} {2 sqrt {1-cos theta}} tag{8} \[4pt]
&=frac12cos ntheta + frac{sin n theta sin theta} {2-2cos theta} tag{9}
end{align}$$
as needed.
Case 2: Suppose $cosfrac{theta}{2}=-sqrt{frac12(1+costheta)}$. Then, by similar logic, I obtained
$$frac{sinfrac{(2n+1)theta}{2}} {2sinfrac{theta}{2}}= frac12 cos n theta- frac{sin n theta sin theta} {2-2cos theta} tag{10}$$
but this seems wrong to me.
Where's my mistake?
complex-analysis trigonometry proof-verification
complex-analysis trigonometry proof-verification
edited Jan 8 at 19:37
Blue
49.7k870158
49.7k870158
asked Jan 8 at 18:50
Pascal's WagerPascal's Wager
381315
381315
2
$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08
1
$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43
add a comment |
2
$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08
1
$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43
2
2
$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08
$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08
1
1
$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43
$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066571%2ferror-in-proving-lagranges-identity-for-1-cos-theta-cdots-cos-n-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066571%2ferror-in-proving-lagranges-identity-for-1-cos-theta-cdots-cos-n-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
How about this one? It's shorter and starts the same way.
$endgroup$
– rtybase
Jan 8 at 21:08
1
$begingroup$
@rtybase +1 That was really helpful and solved my problem, even if it doesn't technically answer my "question."
$endgroup$
– Pascal's Wager
Jan 8 at 21:43