Is every (possibly infinite) sum of cardinal numbers defined?
$begingroup$
Hrbacek and Jech gives the following definition of cardinal addition:
My question is: given an indexed system of cardinals $left langle kappa_{i} |iin I right rangle$ does there exist a system $left langle A_{i} |iin I right rangle$ of mutually disjoint sets such that $|A_{i}|=kappa_{i}$ for all $i in I$?
elementary-set-theory cardinals
$endgroup$
add a comment |
$begingroup$
Hrbacek and Jech gives the following definition of cardinal addition:
My question is: given an indexed system of cardinals $left langle kappa_{i} |iin I right rangle$ does there exist a system $left langle A_{i} |iin I right rangle$ of mutually disjoint sets such that $|A_{i}|=kappa_{i}$ for all $i in I$?
elementary-set-theory cardinals
$endgroup$
add a comment |
$begingroup$
Hrbacek and Jech gives the following definition of cardinal addition:
My question is: given an indexed system of cardinals $left langle kappa_{i} |iin I right rangle$ does there exist a system $left langle A_{i} |iin I right rangle$ of mutually disjoint sets such that $|A_{i}|=kappa_{i}$ for all $i in I$?
elementary-set-theory cardinals
$endgroup$
Hrbacek and Jech gives the following definition of cardinal addition:
My question is: given an indexed system of cardinals $left langle kappa_{i} |iin I right rangle$ does there exist a system $left langle A_{i} |iin I right rangle$ of mutually disjoint sets such that $|A_{i}|=kappa_{i}$ for all $i in I$?
elementary-set-theory cardinals
elementary-set-theory cardinals
asked Dec 29 '18 at 2:49
Barycentric_BashBarycentric_Bash
42339
42339
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes. Just let $A_i={i}times kappa_i$, for instance.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055491%2fis-every-possibly-infinite-sum-of-cardinal-numbers-defined%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes. Just let $A_i={i}times kappa_i$, for instance.
$endgroup$
add a comment |
$begingroup$
Yes. Just let $A_i={i}times kappa_i$, for instance.
$endgroup$
add a comment |
$begingroup$
Yes. Just let $A_i={i}times kappa_i$, for instance.
$endgroup$
Yes. Just let $A_i={i}times kappa_i$, for instance.
answered Dec 29 '18 at 2:53
Eric WofseyEric Wofsey
190k14216348
190k14216348
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055491%2fis-every-possibly-infinite-sum-of-cardinal-numbers-defined%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown