Proving that $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x...
$begingroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Proof
Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$
Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $
begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
Since $epsilon>0$ was arbitrary, then
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Can you please explain the how's in $ eqref{2} ?$
functional-analysis normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Proof
Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$
Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $
begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
Since $epsilon>0$ was arbitrary, then
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Can you please explain the how's in $ eqref{2} ?$
functional-analysis normed-spaces
$endgroup$
add a comment |
$begingroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Proof
Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$
Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $
begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
Since $epsilon>0$ was arbitrary, then
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Can you please explain the how's in $ eqref{2} ?$
functional-analysis normed-spaces
$endgroup$
Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Proof
Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$
Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $
begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
Since $epsilon>0$ was arbitrary, then
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Can you please explain the how's in $ eqref{2} ?$
functional-analysis normed-spaces
functional-analysis normed-spaces
edited Dec 17 '18 at 21:21
Omojola Micheal
asked Dec 17 '18 at 21:15
Omojola MichealOmojola Micheal
1,906324
1,906324
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Answering your "how" questions regarding the inequalities:
The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.
The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.
The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$
$endgroup$
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
add a comment |
$begingroup$
- Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$
- Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.
- It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.
$endgroup$
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044446%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Answering your "how" questions regarding the inequalities:
The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.
The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.
The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$
$endgroup$
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
add a comment |
$begingroup$
Answering your "how" questions regarding the inequalities:
The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.
The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.
The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$
$endgroup$
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
add a comment |
$begingroup$
Answering your "how" questions regarding the inequalities:
The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.
The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.
The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$
$endgroup$
Answering your "how" questions regarding the inequalities:
The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.
The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.
The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$
answered Dec 17 '18 at 21:25
User8128User8128
10.8k1622
10.8k1622
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
add a comment |
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
$begingroup$
Thanks, I am grateful!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:50
add a comment |
$begingroup$
- Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$
- Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.
- It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.
$endgroup$
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
add a comment |
$begingroup$
- Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$
- Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.
- It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.
$endgroup$
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
add a comment |
$begingroup$
- Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$
- Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.
- It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.
$endgroup$
- Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$
- Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.
- It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.
answered Dec 17 '18 at 21:24
José Carlos SantosJosé Carlos Santos
164k22131234
164k22131234
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
add a comment |
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
Thanks, I am very grateful for the help!
$endgroup$
– Omojola Micheal
Dec 17 '18 at 21:49
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
$begingroup$
I'm glad I could help.
$endgroup$
– José Carlos Santos
Dec 17 '18 at 21:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044446%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown