Proving that $Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x...












0












$begingroup$


Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



Proof



Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$



Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $



begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
Since $epsilon>0$ was arbitrary, then
begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
Can you please explain the how's in $ eqref{2} ?$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
    begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



    Proof



    Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$



    Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
    By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
    begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
    Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $



    begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
    Since $epsilon>0$ was arbitrary, then
    begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
    Can you please explain the how's in $ eqref{2} ?$










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
      begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



      Proof



      Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$



      Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
      By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
      begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
      Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $



      begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
      Since $epsilon>0$ was arbitrary, then
      begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
      Can you please explain the how's in $ eqref{2} ?$










      share|cite|improve this question











      $endgroup$




      Let $B(X,Y)$ be the family of all bounded maps from $X$ to $Y.$ Then, we have for arbitrary $Tin B(X,Y), $
      begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}



      Proof



      Since $T$ is bounded and linear, $exists Kgeq 0$ such that for all $xin X,;Vert T x Vert leq K Vert x Vert.$ If $Vert x Vertleq 1$, then $Vert T x Vert leq K Vert x Vertleq K.$



      Thus, begin{align}tag{1}label{1} suplimits_{Vert x Vertleq 1}Vert T x Vertleq inf{ Kgeq 0:Vert T x Vert leq K Vert x Vert,forall;xin K }=Vert T Vertend{align}
      By definition of $inf,$ for every $epsilon> 0,exists ;x_{epsilon}in X,x_{epsilon}neq 0$ such that
      begin{align} Vert T x_{epsilon} Vert>left(Vert T Vert -epsilonright)Vert x_{epsilon} Vert.end{align}
      Let $u_{epsilon}=frac{x_{epsilon}}{Vert x_{epsilon} Vert},$ then $u_{epsilon}=1$ and $ Vert T u_{epsilon} Vert>Vert T Vert -epsilon.$ We obtain from $ eqref{1} $



      begin{align} tag{2}label{2}Vert T Vert geqsuplimits_{Vert x Vertleq 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x Vert = 1}Vert T x Vertstackrel{text{how?}}{geq} suplimits_{Vert x_{epsilon} Vertneq 0} Vert Tleft(frac{x_{epsilon} }{big Vert x_{epsilon} Vert}right)bigVertstackrel{text{how?}}{geq}Vert T Vert -epsilon.end{align}
      Since $epsilon>0$ was arbitrary, then
      begin{align} Vert T Vert =suplimits_{Vert x Vertleq 1}Vert T x Vert= suplimits_{Vert x Vert = 1}Vert T x Vert=suplimits_{xneq 0} frac{Vert T x Vert}{Vert x Vert}.end{align}
      Can you please explain the how's in $ eqref{2} ?$







      functional-analysis normed-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 17 '18 at 21:21







      Omojola Micheal

















      asked Dec 17 '18 at 21:15









      Omojola MichealOmojola Micheal

      1,906324




      1,906324






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Answering your "how" questions regarding the inequalities:



          The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.



          The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.



          The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, I am grateful!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:50



















          1












          $begingroup$


          1. Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$

          2. Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.

          3. It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, I am very grateful for the help!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:49










          • $begingroup$
            I'm glad I could help.
            $endgroup$
            – José Carlos Santos
            Dec 17 '18 at 21:51











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044446%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Answering your "how" questions regarding the inequalities:



          The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.



          The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.



          The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, I am grateful!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:50
















          1












          $begingroup$

          Answering your "how" questions regarding the inequalities:



          The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.



          The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.



          The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, I am grateful!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:50














          1












          1








          1





          $begingroup$

          Answering your "how" questions regarding the inequalities:



          The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.



          The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.



          The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$






          share|cite|improve this answer









          $endgroup$



          Answering your "how" questions regarding the inequalities:



          The first one is because you're taking the sup over a smaller set. When $A subset B$, and $f$ is a real valued map whose domain contains $A$ and $B$, we have $$sup_{x in A} f(x) le sup_{x in B} f(x).$$ Here $B = {x , : , |x| le 1}$ and $A = { x , : , |x | = 1}$.



          The second is again just restricting to a smaller set. For each $epsilon$, the vector $x_epsilon/|x_epsilon|$ has norm $1$, so if we only consider the sup over those vectors, we are again considering a smaller set, and thus get the inequality for the same reason as above.



          The third is by the definition of $x_epsilon$. We've chosen $x_epsilon$ such that $$left | Tleft(frac{x_epsilon}{| x_epsilon|} right)right | ge |T | - epsilon.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 17 '18 at 21:25









          User8128User8128

          10.8k1622




          10.8k1622












          • $begingroup$
            Thanks, I am grateful!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:50


















          • $begingroup$
            Thanks, I am grateful!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:50
















          $begingroup$
          Thanks, I am grateful!
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 21:50




          $begingroup$
          Thanks, I am grateful!
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 21:50











          1












          $begingroup$


          1. Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$

          2. Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.

          3. It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, I am very grateful for the help!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:49










          • $begingroup$
            I'm glad I could help.
            $endgroup$
            – José Carlos Santos
            Dec 17 '18 at 21:51
















          1












          $begingroup$


          1. Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$

          2. Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.

          3. It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks, I am very grateful for the help!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:49










          • $begingroup$
            I'm glad I could help.
            $endgroup$
            – José Carlos Santos
            Dec 17 '18 at 21:51














          1












          1








          1





          $begingroup$


          1. Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$

          2. Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.

          3. It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.






          share|cite|improve this answer









          $endgroup$




          1. Since $bigl{lVert TxrVert,|,lVert xleqslant1bigr}supsetbigl{lVert TxrVert,|,lVert x=1bigr}$, $supbigl{lVert TxrVert,|,lVert xleqslant1bigr}leqslantsupbigl{lVert TxrVert,|,lVert x=1bigr}$

          2. Because $leftlVertdfrac{x_varepsilon}{lVert x_varepsilonlVert}rightrVert=1$.

          3. It was proved before that $leftlVert Tleft(dfrac{x_varepsilon}{lVert x_varepsilonlVert}right)rightrVertgeqslantlVert TrVert-varepsilon$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 17 '18 at 21:24









          José Carlos SantosJosé Carlos Santos

          164k22131234




          164k22131234












          • $begingroup$
            Thanks, I am very grateful for the help!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:49










          • $begingroup$
            I'm glad I could help.
            $endgroup$
            – José Carlos Santos
            Dec 17 '18 at 21:51


















          • $begingroup$
            Thanks, I am very grateful for the help!
            $endgroup$
            – Omojola Micheal
            Dec 17 '18 at 21:49










          • $begingroup$
            I'm glad I could help.
            $endgroup$
            – José Carlos Santos
            Dec 17 '18 at 21:51
















          $begingroup$
          Thanks, I am very grateful for the help!
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 21:49




          $begingroup$
          Thanks, I am very grateful for the help!
          $endgroup$
          – Omojola Micheal
          Dec 17 '18 at 21:49












          $begingroup$
          I'm glad I could help.
          $endgroup$
          – José Carlos Santos
          Dec 17 '18 at 21:51




          $begingroup$
          I'm glad I could help.
          $endgroup$
          – José Carlos Santos
          Dec 17 '18 at 21:51


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044446%2fproving-that-vert-t-vert-sup-limits-vert-x-vert-leq-1-vert-t-x-vert%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix