Plane Geometry problem: $a(PA)^2 + b(PB)^2 + c(PC)^2$ is minimum












0












$begingroup$


Problem: Let $ABC$ be a fixed triangle and $P$ be a variable point in the plane of $Delta ABC$. If $a(PA)^2 + b(PB)^2 + c(PC)^2$ is minimum, then the point P with respect to $Delta ABC$ is



(A) Centroid $quad quad$ (B) Circumcentre $quad quad$ (C) Orthocentre $quad quad$ (D) Incentre



I tried this problem with pure geometry but could not solve, please help me.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Hint: For any $alpha, beta, gamma > 0$, the expression $alpha |PA|^2 + beta |PB|^2 + gamma |PC|^2$ is minimized at the weighted centroid $P = frac{alpha A + beta B + gamma C}{alpha + beta + gamma}$.
    $endgroup$
    – achille hui
    Dec 2 '18 at 0:54










  • $begingroup$
    @achille hui Please elaborate.
    $endgroup$
    – prashant sharma
    Dec 2 '18 at 3:07










  • $begingroup$
    The $P$ you seek is $frac{a A + bB + cC}{a+b+c}$, i.e. the barycentric coordinates of $P$ wrt triangle ABC is $a : b : c$. Look at its wiki entry (in particular section 2.6) for the barycentric coordinates for a list of special points. Your point is there.
    $endgroup$
    – achille hui
    Dec 2 '18 at 3:16
















0












$begingroup$


Problem: Let $ABC$ be a fixed triangle and $P$ be a variable point in the plane of $Delta ABC$. If $a(PA)^2 + b(PB)^2 + c(PC)^2$ is minimum, then the point P with respect to $Delta ABC$ is



(A) Centroid $quad quad$ (B) Circumcentre $quad quad$ (C) Orthocentre $quad quad$ (D) Incentre



I tried this problem with pure geometry but could not solve, please help me.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Hint: For any $alpha, beta, gamma > 0$, the expression $alpha |PA|^2 + beta |PB|^2 + gamma |PC|^2$ is minimized at the weighted centroid $P = frac{alpha A + beta B + gamma C}{alpha + beta + gamma}$.
    $endgroup$
    – achille hui
    Dec 2 '18 at 0:54










  • $begingroup$
    @achille hui Please elaborate.
    $endgroup$
    – prashant sharma
    Dec 2 '18 at 3:07










  • $begingroup$
    The $P$ you seek is $frac{a A + bB + cC}{a+b+c}$, i.e. the barycentric coordinates of $P$ wrt triangle ABC is $a : b : c$. Look at its wiki entry (in particular section 2.6) for the barycentric coordinates for a list of special points. Your point is there.
    $endgroup$
    – achille hui
    Dec 2 '18 at 3:16














0












0








0





$begingroup$


Problem: Let $ABC$ be a fixed triangle and $P$ be a variable point in the plane of $Delta ABC$. If $a(PA)^2 + b(PB)^2 + c(PC)^2$ is minimum, then the point P with respect to $Delta ABC$ is



(A) Centroid $quad quad$ (B) Circumcentre $quad quad$ (C) Orthocentre $quad quad$ (D) Incentre



I tried this problem with pure geometry but could not solve, please help me.










share|cite|improve this question









$endgroup$




Problem: Let $ABC$ be a fixed triangle and $P$ be a variable point in the plane of $Delta ABC$. If $a(PA)^2 + b(PB)^2 + c(PC)^2$ is minimum, then the point P with respect to $Delta ABC$ is



(A) Centroid $quad quad$ (B) Circumcentre $quad quad$ (C) Orthocentre $quad quad$ (D) Incentre



I tried this problem with pure geometry but could not solve, please help me.







triangle plane-geometry






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 2 '18 at 0:04









prashant sharmaprashant sharma

756




756












  • $begingroup$
    Hint: For any $alpha, beta, gamma > 0$, the expression $alpha |PA|^2 + beta |PB|^2 + gamma |PC|^2$ is minimized at the weighted centroid $P = frac{alpha A + beta B + gamma C}{alpha + beta + gamma}$.
    $endgroup$
    – achille hui
    Dec 2 '18 at 0:54










  • $begingroup$
    @achille hui Please elaborate.
    $endgroup$
    – prashant sharma
    Dec 2 '18 at 3:07










  • $begingroup$
    The $P$ you seek is $frac{a A + bB + cC}{a+b+c}$, i.e. the barycentric coordinates of $P$ wrt triangle ABC is $a : b : c$. Look at its wiki entry (in particular section 2.6) for the barycentric coordinates for a list of special points. Your point is there.
    $endgroup$
    – achille hui
    Dec 2 '18 at 3:16


















  • $begingroup$
    Hint: For any $alpha, beta, gamma > 0$, the expression $alpha |PA|^2 + beta |PB|^2 + gamma |PC|^2$ is minimized at the weighted centroid $P = frac{alpha A + beta B + gamma C}{alpha + beta + gamma}$.
    $endgroup$
    – achille hui
    Dec 2 '18 at 0:54










  • $begingroup$
    @achille hui Please elaborate.
    $endgroup$
    – prashant sharma
    Dec 2 '18 at 3:07










  • $begingroup$
    The $P$ you seek is $frac{a A + bB + cC}{a+b+c}$, i.e. the barycentric coordinates of $P$ wrt triangle ABC is $a : b : c$. Look at its wiki entry (in particular section 2.6) for the barycentric coordinates for a list of special points. Your point is there.
    $endgroup$
    – achille hui
    Dec 2 '18 at 3:16
















$begingroup$
Hint: For any $alpha, beta, gamma > 0$, the expression $alpha |PA|^2 + beta |PB|^2 + gamma |PC|^2$ is minimized at the weighted centroid $P = frac{alpha A + beta B + gamma C}{alpha + beta + gamma}$.
$endgroup$
– achille hui
Dec 2 '18 at 0:54




$begingroup$
Hint: For any $alpha, beta, gamma > 0$, the expression $alpha |PA|^2 + beta |PB|^2 + gamma |PC|^2$ is minimized at the weighted centroid $P = frac{alpha A + beta B + gamma C}{alpha + beta + gamma}$.
$endgroup$
– achille hui
Dec 2 '18 at 0:54












$begingroup$
@achille hui Please elaborate.
$endgroup$
– prashant sharma
Dec 2 '18 at 3:07




$begingroup$
@achille hui Please elaborate.
$endgroup$
– prashant sharma
Dec 2 '18 at 3:07












$begingroup$
The $P$ you seek is $frac{a A + bB + cC}{a+b+c}$, i.e. the barycentric coordinates of $P$ wrt triangle ABC is $a : b : c$. Look at its wiki entry (in particular section 2.6) for the barycentric coordinates for a list of special points. Your point is there.
$endgroup$
– achille hui
Dec 2 '18 at 3:16




$begingroup$
The $P$ you seek is $frac{a A + bB + cC}{a+b+c}$, i.e. the barycentric coordinates of $P$ wrt triangle ABC is $a : b : c$. Look at its wiki entry (in particular section 2.6) for the barycentric coordinates for a list of special points. Your point is there.
$endgroup$
– achille hui
Dec 2 '18 at 3:16










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022030%2fplane-geometry-problem-apa2-bpb2-cpc2-is-minimum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022030%2fplane-geometry-problem-apa2-bpb2-cpc2-is-minimum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How do I know what Microsoft account the skydrive app is syncing to?

When does type information flow backwards in C++?

Grease: Live!