Approximation of a lower semi continuous function by monotone sequence of continuous functions
$begingroup$
Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
$$ c: X times Y to [0, +infty]$$
a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
$$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
Then $c_k$ are continuous functions, monotonically increasing converging to $c$.
Proof:
Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
$$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
$$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
and then
$$ c_{k}(x,y) le c_{k+1}(x,y) $$Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
$$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
To do that I find $k_{epsilon} in mathbb{N}$ s.t.
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
for any $(x',y') in X times Y$.
Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
$$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$
Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$
If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
$$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
I obtain
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
QED
I think this proof is too long and involved.
So
is this proof correct? Does there exist a shorter proof?
real-analysis proof-verification convergence
$endgroup$
add a comment |
$begingroup$
Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
$$ c: X times Y to [0, +infty]$$
a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
$$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
Then $c_k$ are continuous functions, monotonically increasing converging to $c$.
Proof:
Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
$$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
$$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
and then
$$ c_{k}(x,y) le c_{k+1}(x,y) $$Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
$$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
To do that I find $k_{epsilon} in mathbb{N}$ s.t.
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
for any $(x',y') in X times Y$.
Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
$$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$
Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$
If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
$$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
I obtain
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
QED
I think this proof is too long and involved.
So
is this proof correct? Does there exist a shorter proof?
real-analysis proof-verification convergence
$endgroup$
add a comment |
$begingroup$
Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
$$ c: X times Y to [0, +infty]$$
a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
$$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
Then $c_k$ are continuous functions, monotonically increasing converging to $c$.
Proof:
Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
$$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
$$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
and then
$$ c_{k}(x,y) le c_{k+1}(x,y) $$Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
$$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
To do that I find $k_{epsilon} in mathbb{N}$ s.t.
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
for any $(x',y') in X times Y$.
Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
$$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$
Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$
If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
$$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
I obtain
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
QED
I think this proof is too long and involved.
So
is this proof correct? Does there exist a shorter proof?
real-analysis proof-verification convergence
$endgroup$
Let $ (X, d_X)$ and $ (Y, d_Y) $ be metric spaces and let
$$ c: X times Y to [0, +infty]$$
a lower semicontinuous function. Then define for each $k in mathbb{N}$ the functions
$$ c_k (x,y): = inf_{x' in X, y' in Y} { c(x',y') wedge k + kd_X(x,x')+kd_Y(y,y') } $$
Then $c_k$ are continuous functions, monotonically increasing converging to $c$.
Proof:
Continuity: take $(x,y) in X times Y$ and a sequence ${ x_n,y_n }_{n ge 1} $ converging to $(x,y)$. Then
$$ | c_k(x,y)-c_k(x_n,y_n) | le sup_{x' in X, y' in Y} | kd_X(x,x')+kd_Y(y,y') -kd_X(x_n,x')-kd_Y(y_n,y') | le sup_{x' in X, y' in Y} k(d_X(x_n, x)|+d_Y(y_n,y)) to 0$$Monotonically increasing: fix $(x,y) in X times Y$ and consider any $(x',y') in X times Y$, then
$$ c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y') le c(x',y') wedge (k+1) + (k+1)d_X(x',x)+ (k+1)d_Y(y,y') $$
and then
$$ c_{k}(x,y) le c_{k+1}(x,y) $$Convergence: First I observe that if $ (x',y') = (x,y)$ and $c(x,y) = + infty$ I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k = k$$
Then $c_k(x,y) ge k$ and then $c_k to + infty$ when $k to + infty$.
From now on I only consider the case in which $c(x,y) < + infty$. Then if $ (x',y') = (x,y)$, I have
$$c(x',y') wedge k + kd_X(x',x)+ kd_Y(y,y')= c(x,y) wedge k le c(x,y) $$
which implies $c_k(x,y) le c(x,y)$. Then it is enough to prove that $c(x,y)$ is the supremum of the sequence $c_k(x,y)$. Fix $0< epsilon < c(x,y)/2$.
I want to prove that there exists a $k_{epsilon} in mathbb{N}$ s.t.
$$c_{k_{epsilon}}(x,y) > c(x,y) - 2epsilon $$
To do that I find $k_{epsilon} in mathbb{N}$ s.t.
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) -epsilon $$
for any $(x',y') in X times Y$.
Since $c$ is l.s.c. there exists a $delta= delta(epsilon)>0$ s.t.
$$ (x',y') in B_{delta}((x,y)) Rightarrow c(x',y') > c(x,y) - epsilon$$
Then if $(x',y') in B_{delta}((x,y))$ I take $k_{epsilon} > c(x,y)- epsilon$ and then
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > c(x,y) - epsilon + 0 $$
If $(x',y') notin B_{delta}((x,y))$ then $d_X(x',x) +d(y',y) > c(epsilon) >0$ and then, taking
$$k_{epsilon} > frac{c(x,y)-epsilon}{c(epsilon)}$$
I obtain
$$ c(x',y') wedge k_{epsilon} + k_{epsilon}d_X(x',x)+ k_{epsilon}d_Y(y,y') > 0 + c(x,y) - epsilon$$
QED
I think this proof is too long and involved.
So
is this proof correct? Does there exist a shorter proof?
real-analysis proof-verification convergence
real-analysis proof-verification convergence
edited Dec 3 '18 at 18:10
Bremen000
asked Dec 1 '18 at 23:44
Bremen000Bremen000
424210
424210
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022008%2fapproximation-of-a-lower-semi-continuous-function-by-monotone-sequence-of-contin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022008%2fapproximation-of-a-lower-semi-continuous-function-by-monotone-sequence-of-contin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown