How can I show that the stochastic integral of a jump process w.r.t. Brownian motion is a local martingale by...











up vote
1
down vote

favorite
1












Suppose that $Y$ is a pure jump process with $N_t$ jumps in $(0,t]$ and $E[N_t]<infty$. Denote the jump times by $T_i$. Let $W$ be a Brownian motion. If $T_0=0$, then
begin{equation}
M_t=int_0^t Y_s,dW_s=sum_{i=0}^{N_t-1} Y_{T_i}(W_{T_{i+1}}-W_{T_i})+Y_t(W_t-W_{T_{N_t}}).
end{equation}

The process $M$ is continuous. I want to show that $M$ is a local martingale by using the sequence $tau_n=inf{t: |M_t|>n}$. That is, I have to show that ${M_{tau_nwedge t}}$ is a martingale. I have read that one can use the above sequence of stopping times for continuous local martingales. But why or how?










share|cite|improve this question









New contributor




Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    1
    down vote

    favorite
    1












    Suppose that $Y$ is a pure jump process with $N_t$ jumps in $(0,t]$ and $E[N_t]<infty$. Denote the jump times by $T_i$. Let $W$ be a Brownian motion. If $T_0=0$, then
    begin{equation}
    M_t=int_0^t Y_s,dW_s=sum_{i=0}^{N_t-1} Y_{T_i}(W_{T_{i+1}}-W_{T_i})+Y_t(W_t-W_{T_{N_t}}).
    end{equation}

    The process $M$ is continuous. I want to show that $M$ is a local martingale by using the sequence $tau_n=inf{t: |M_t|>n}$. That is, I have to show that ${M_{tau_nwedge t}}$ is a martingale. I have read that one can use the above sequence of stopping times for continuous local martingales. But why or how?










    share|cite|improve this question









    New contributor




    Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Suppose that $Y$ is a pure jump process with $N_t$ jumps in $(0,t]$ and $E[N_t]<infty$. Denote the jump times by $T_i$. Let $W$ be a Brownian motion. If $T_0=0$, then
      begin{equation}
      M_t=int_0^t Y_s,dW_s=sum_{i=0}^{N_t-1} Y_{T_i}(W_{T_{i+1}}-W_{T_i})+Y_t(W_t-W_{T_{N_t}}).
      end{equation}

      The process $M$ is continuous. I want to show that $M$ is a local martingale by using the sequence $tau_n=inf{t: |M_t|>n}$. That is, I have to show that ${M_{tau_nwedge t}}$ is a martingale. I have read that one can use the above sequence of stopping times for continuous local martingales. But why or how?










      share|cite|improve this question









      New contributor




      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      Suppose that $Y$ is a pure jump process with $N_t$ jumps in $(0,t]$ and $E[N_t]<infty$. Denote the jump times by $T_i$. Let $W$ be a Brownian motion. If $T_0=0$, then
      begin{equation}
      M_t=int_0^t Y_s,dW_s=sum_{i=0}^{N_t-1} Y_{T_i}(W_{T_{i+1}}-W_{T_i})+Y_t(W_t-W_{T_{N_t}}).
      end{equation}

      The process $M$ is continuous. I want to show that $M$ is a local martingale by using the sequence $tau_n=inf{t: |M_t|>n}$. That is, I have to show that ${M_{tau_nwedge t}}$ is a martingale. I have read that one can use the above sequence of stopping times for continuous local martingales. But why or how?







      brownian-motion martingales stochastic-integrals stochastic-analysis local-martingales






      share|cite|improve this question









      New contributor




      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited Nov 14 at 10:10





















      New contributor




      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Nov 13 at 16:48









      Sofia

      62




      62




      New contributor




      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Sofia is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          I guess you could use the sequence $tau_n=inf{t,:, N_t=n}$ and then Corollary 6.14 (or 7.14 depending on the edition, it is called "martingale transforms") from Kallenberg's Foundations of Modern Probability yields the result.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Sofia is a new contributor. Be nice, and check out our Code of Conduct.










             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996976%2fhow-can-i-show-that-the-stochastic-integral-of-a-jump-process-w-r-t-brownian-mo%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            I guess you could use the sequence $tau_n=inf{t,:, N_t=n}$ and then Corollary 6.14 (or 7.14 depending on the edition, it is called "martingale transforms") from Kallenberg's Foundations of Modern Probability yields the result.






            share|cite|improve this answer

























              up vote
              0
              down vote













              I guess you could use the sequence $tau_n=inf{t,:, N_t=n}$ and then Corollary 6.14 (or 7.14 depending on the edition, it is called "martingale transforms") from Kallenberg's Foundations of Modern Probability yields the result.






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                I guess you could use the sequence $tau_n=inf{t,:, N_t=n}$ and then Corollary 6.14 (or 7.14 depending on the edition, it is called "martingale transforms") from Kallenberg's Foundations of Modern Probability yields the result.






                share|cite|improve this answer












                I guess you could use the sequence $tau_n=inf{t,:, N_t=n}$ and then Corollary 6.14 (or 7.14 depending on the edition, it is called "martingale transforms") from Kallenberg's Foundations of Modern Probability yields the result.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 14 at 11:10









                TimBraun

                111




                111






















                    Sofia is a new contributor. Be nice, and check out our Code of Conduct.










                     

                    draft saved


                    draft discarded


















                    Sofia is a new contributor. Be nice, and check out our Code of Conduct.













                    Sofia is a new contributor. Be nice, and check out our Code of Conduct.












                    Sofia is a new contributor. Be nice, and check out our Code of Conduct.















                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996976%2fhow-can-i-show-that-the-stochastic-integral-of-a-jump-process-w-r-t-brownian-mo%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix