Exponential family for Gumbel distribution











up vote
0
down vote

favorite












Consider the Gumbel distributions $(P_vartheta)_{varthetaintheta}=(G(beta,mu))_{(beta,mu)in(0,infty)timesmathbb{R}}$ with distribution functions



$$F_{beta,mu}(x)=e^{-e^{-frac{1}{beta}(x-mu)}}$$



Consider the productmodel $(mathbb{R}^n, mathcal{B}(mathbb{R})^{otimes n}, (P_vartheta^{otimes n})_{varthetaintheta})$



Can $(G(beta,tildemu)^{otimes n})_{betain(0,infty)}$ be written as an exponential family for a given $tildemu$?



Can $(G(tildebeta,mu)^{otimes n})_{muinmathbb{R}}$ be written as an exponential family for a given $tildebeta$?



I found the answer on my own:



So for a given $tildebeta$ my attempt is following:



$$f_mu(x)=frac{1}{tildebeta}e^{-frac{1}{tildebeta}(x-mu)}e^{-e^{-frac{1}{tildebeta}(x-mu)}}$$



Therefore we get



begin{align}
f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-sum_{i=1}^ne^{-frac{1}{tildebeta}(x_i-mu)}Big)\
&=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-e^{frac{mu}{tildebeta}}sum_{i=1}^ne^{-frac{x_i}{tildebeta}}Big)\
&=expBig(-e^{frac{mu}{tildebeta}}cdotsum_{i=1}^ne^{-frac{x_i}{tildebeta}}+frac{n}{tildebeta}muBig)cdotfrac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig),
end{align}



which is an exponential family.



For given $tildemuinmathbb{R}$ one finds again



begin{align}
f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{beta^n}expBig(-frac{1}{beta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{beta}tildemuBig)expBig(-e^{frac{tildemu}{beta}}sum_{i=1}^ne^{-frac{x_i}{beta}}Big)\
end{align}

The critical point is that $$forall iin{1,ldots, n}foralltext{ functions }eta_i,T_i: e^{-frac{x_i}{beta}}ne eta_i(beta)T_i(x_i)$$
Therefore this is not an exponential family, because one would need to to separate the variables $beta$ and $x_i$ in the expression



$$e^{-frac{x_i}{beta}}$$



to write down an exponential family.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Consider the Gumbel distributions $(P_vartheta)_{varthetaintheta}=(G(beta,mu))_{(beta,mu)in(0,infty)timesmathbb{R}}$ with distribution functions



    $$F_{beta,mu}(x)=e^{-e^{-frac{1}{beta}(x-mu)}}$$



    Consider the productmodel $(mathbb{R}^n, mathcal{B}(mathbb{R})^{otimes n}, (P_vartheta^{otimes n})_{varthetaintheta})$



    Can $(G(beta,tildemu)^{otimes n})_{betain(0,infty)}$ be written as an exponential family for a given $tildemu$?



    Can $(G(tildebeta,mu)^{otimes n})_{muinmathbb{R}}$ be written as an exponential family for a given $tildebeta$?



    I found the answer on my own:



    So for a given $tildebeta$ my attempt is following:



    $$f_mu(x)=frac{1}{tildebeta}e^{-frac{1}{tildebeta}(x-mu)}e^{-e^{-frac{1}{tildebeta}(x-mu)}}$$



    Therefore we get



    begin{align}
    f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-sum_{i=1}^ne^{-frac{1}{tildebeta}(x_i-mu)}Big)\
    &=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-e^{frac{mu}{tildebeta}}sum_{i=1}^ne^{-frac{x_i}{tildebeta}}Big)\
    &=expBig(-e^{frac{mu}{tildebeta}}cdotsum_{i=1}^ne^{-frac{x_i}{tildebeta}}+frac{n}{tildebeta}muBig)cdotfrac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig),
    end{align}



    which is an exponential family.



    For given $tildemuinmathbb{R}$ one finds again



    begin{align}
    f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{beta^n}expBig(-frac{1}{beta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{beta}tildemuBig)expBig(-e^{frac{tildemu}{beta}}sum_{i=1}^ne^{-frac{x_i}{beta}}Big)\
    end{align}

    The critical point is that $$forall iin{1,ldots, n}foralltext{ functions }eta_i,T_i: e^{-frac{x_i}{beta}}ne eta_i(beta)T_i(x_i)$$
    Therefore this is not an exponential family, because one would need to to separate the variables $beta$ and $x_i$ in the expression



    $$e^{-frac{x_i}{beta}}$$



    to write down an exponential family.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Consider the Gumbel distributions $(P_vartheta)_{varthetaintheta}=(G(beta,mu))_{(beta,mu)in(0,infty)timesmathbb{R}}$ with distribution functions



      $$F_{beta,mu}(x)=e^{-e^{-frac{1}{beta}(x-mu)}}$$



      Consider the productmodel $(mathbb{R}^n, mathcal{B}(mathbb{R})^{otimes n}, (P_vartheta^{otimes n})_{varthetaintheta})$



      Can $(G(beta,tildemu)^{otimes n})_{betain(0,infty)}$ be written as an exponential family for a given $tildemu$?



      Can $(G(tildebeta,mu)^{otimes n})_{muinmathbb{R}}$ be written as an exponential family for a given $tildebeta$?



      I found the answer on my own:



      So for a given $tildebeta$ my attempt is following:



      $$f_mu(x)=frac{1}{tildebeta}e^{-frac{1}{tildebeta}(x-mu)}e^{-e^{-frac{1}{tildebeta}(x-mu)}}$$



      Therefore we get



      begin{align}
      f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-sum_{i=1}^ne^{-frac{1}{tildebeta}(x_i-mu)}Big)\
      &=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-e^{frac{mu}{tildebeta}}sum_{i=1}^ne^{-frac{x_i}{tildebeta}}Big)\
      &=expBig(-e^{frac{mu}{tildebeta}}cdotsum_{i=1}^ne^{-frac{x_i}{tildebeta}}+frac{n}{tildebeta}muBig)cdotfrac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig),
      end{align}



      which is an exponential family.



      For given $tildemuinmathbb{R}$ one finds again



      begin{align}
      f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{beta^n}expBig(-frac{1}{beta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{beta}tildemuBig)expBig(-e^{frac{tildemu}{beta}}sum_{i=1}^ne^{-frac{x_i}{beta}}Big)\
      end{align}

      The critical point is that $$forall iin{1,ldots, n}foralltext{ functions }eta_i,T_i: e^{-frac{x_i}{beta}}ne eta_i(beta)T_i(x_i)$$
      Therefore this is not an exponential family, because one would need to to separate the variables $beta$ and $x_i$ in the expression



      $$e^{-frac{x_i}{beta}}$$



      to write down an exponential family.










      share|cite|improve this question















      Consider the Gumbel distributions $(P_vartheta)_{varthetaintheta}=(G(beta,mu))_{(beta,mu)in(0,infty)timesmathbb{R}}$ with distribution functions



      $$F_{beta,mu}(x)=e^{-e^{-frac{1}{beta}(x-mu)}}$$



      Consider the productmodel $(mathbb{R}^n, mathcal{B}(mathbb{R})^{otimes n}, (P_vartheta^{otimes n})_{varthetaintheta})$



      Can $(G(beta,tildemu)^{otimes n})_{betain(0,infty)}$ be written as an exponential family for a given $tildemu$?



      Can $(G(tildebeta,mu)^{otimes n})_{muinmathbb{R}}$ be written as an exponential family for a given $tildebeta$?



      I found the answer on my own:



      So for a given $tildebeta$ my attempt is following:



      $$f_mu(x)=frac{1}{tildebeta}e^{-frac{1}{tildebeta}(x-mu)}e^{-e^{-frac{1}{tildebeta}(x-mu)}}$$



      Therefore we get



      begin{align}
      f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-sum_{i=1}^ne^{-frac{1}{tildebeta}(x_i-mu)}Big)\
      &=frac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{tildebeta}muBig)expBig(-e^{frac{mu}{tildebeta}}sum_{i=1}^ne^{-frac{x_i}{tildebeta}}Big)\
      &=expBig(-e^{frac{mu}{tildebeta}}cdotsum_{i=1}^ne^{-frac{x_i}{tildebeta}}+frac{n}{tildebeta}muBig)cdotfrac{1}{tildebeta^n}expBig(-frac{1}{tildebeta}cdotsum_{i=1}^nx_iBig),
      end{align}



      which is an exponential family.



      For given $tildemuinmathbb{R}$ one finds again



      begin{align}
      f_mu^{otimes n}(x)=prod_{i=1}^n f_mu(x_i)&=frac{1}{beta^n}expBig(-frac{1}{beta}cdotsum_{i=1}^nx_iBig)expBig(frac{n}{beta}tildemuBig)expBig(-e^{frac{tildemu}{beta}}sum_{i=1}^ne^{-frac{x_i}{beta}}Big)\
      end{align}

      The critical point is that $$forall iin{1,ldots, n}foralltext{ functions }eta_i,T_i: e^{-frac{x_i}{beta}}ne eta_i(beta)T_i(x_i)$$
      Therefore this is not an exponential family, because one would need to to separate the variables $beta$ and $x_i$ in the expression



      $$e^{-frac{x_i}{beta}}$$



      to write down an exponential family.







      probability probability-theory statistics descriptive-statistics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 13 at 21:29

























      asked Nov 13 at 17:17









      user408858

      19510




      19510



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997010%2fexponential-family-for-gumbel-distribution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997010%2fexponential-family-for-gumbel-distribution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix