Proving $mathbb{E}(S_{tau}|tau)=tau mathbb{E}(xi_1)$ and $mathbb{E}S_{tau}=mathbb{E}tau mathbb{E}xi_1$












2












$begingroup$


Let $xi_1, x_2,...,xi_n$ and $tau$ be independent random variables in $(Omega, mathcal{F}, mathbb{P})$. $xi_1, x_2,...,xi_n$ are uniformly distributed and $tau={0,1,2,...,n}$. Let $S_{tau}=xi_1+xi_2+...+xi_{tau}$ be a random sum of random variables.



I need to show that



1) $mathbb{E}(S_{tau}|tau)=tau mathbb{E}(xi_1)$ and $mathbb{E}S_{tau}=mathbb{E}tau mathbb{E}xi_1$.



2) $mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1$ and $mathbb{D}S_{tau}=mathbb{E}tau mathbb{D}xi_1+mathbb{D}tau (mathbb{E}xi_1)^2$.



So for the first part I think I can use this
$mathbb{E}S_{tau}=mathbb{E}mathbb{E}(S_{tau}|tau)=sum_{ngeq1}mathbb{E}(xi_1+xi_2+...+xi_{tau}|tau)mathbb{P}(tau=n)=sum_{ngeq 1}nmathbb{E}xi_imathbb{P}(tau=n)=mathbb{E}xi_i sum_{ngeq1}mathbb{P}(tau=n)=mathbb{E}xi_1mathbb{E}tau .$



So am I right?



For the second part I am really not sure what to do.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What do you mean by $mathbb{D}(X)$?
    $endgroup$
    – Lundborg
    Jan 3 at 10:55
















2












$begingroup$


Let $xi_1, x_2,...,xi_n$ and $tau$ be independent random variables in $(Omega, mathcal{F}, mathbb{P})$. $xi_1, x_2,...,xi_n$ are uniformly distributed and $tau={0,1,2,...,n}$. Let $S_{tau}=xi_1+xi_2+...+xi_{tau}$ be a random sum of random variables.



I need to show that



1) $mathbb{E}(S_{tau}|tau)=tau mathbb{E}(xi_1)$ and $mathbb{E}S_{tau}=mathbb{E}tau mathbb{E}xi_1$.



2) $mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1$ and $mathbb{D}S_{tau}=mathbb{E}tau mathbb{D}xi_1+mathbb{D}tau (mathbb{E}xi_1)^2$.



So for the first part I think I can use this
$mathbb{E}S_{tau}=mathbb{E}mathbb{E}(S_{tau}|tau)=sum_{ngeq1}mathbb{E}(xi_1+xi_2+...+xi_{tau}|tau)mathbb{P}(tau=n)=sum_{ngeq 1}nmathbb{E}xi_imathbb{P}(tau=n)=mathbb{E}xi_i sum_{ngeq1}mathbb{P}(tau=n)=mathbb{E}xi_1mathbb{E}tau .$



So am I right?



For the second part I am really not sure what to do.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What do you mean by $mathbb{D}(X)$?
    $endgroup$
    – Lundborg
    Jan 3 at 10:55














2












2








2





$begingroup$


Let $xi_1, x_2,...,xi_n$ and $tau$ be independent random variables in $(Omega, mathcal{F}, mathbb{P})$. $xi_1, x_2,...,xi_n$ are uniformly distributed and $tau={0,1,2,...,n}$. Let $S_{tau}=xi_1+xi_2+...+xi_{tau}$ be a random sum of random variables.



I need to show that



1) $mathbb{E}(S_{tau}|tau)=tau mathbb{E}(xi_1)$ and $mathbb{E}S_{tau}=mathbb{E}tau mathbb{E}xi_1$.



2) $mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1$ and $mathbb{D}S_{tau}=mathbb{E}tau mathbb{D}xi_1+mathbb{D}tau (mathbb{E}xi_1)^2$.



So for the first part I think I can use this
$mathbb{E}S_{tau}=mathbb{E}mathbb{E}(S_{tau}|tau)=sum_{ngeq1}mathbb{E}(xi_1+xi_2+...+xi_{tau}|tau)mathbb{P}(tau=n)=sum_{ngeq 1}nmathbb{E}xi_imathbb{P}(tau=n)=mathbb{E}xi_i sum_{ngeq1}mathbb{P}(tau=n)=mathbb{E}xi_1mathbb{E}tau .$



So am I right?



For the second part I am really not sure what to do.










share|cite|improve this question









$endgroup$




Let $xi_1, x_2,...,xi_n$ and $tau$ be independent random variables in $(Omega, mathcal{F}, mathbb{P})$. $xi_1, x_2,...,xi_n$ are uniformly distributed and $tau={0,1,2,...,n}$. Let $S_{tau}=xi_1+xi_2+...+xi_{tau}$ be a random sum of random variables.



I need to show that



1) $mathbb{E}(S_{tau}|tau)=tau mathbb{E}(xi_1)$ and $mathbb{E}S_{tau}=mathbb{E}tau mathbb{E}xi_1$.



2) $mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1$ and $mathbb{D}S_{tau}=mathbb{E}tau mathbb{D}xi_1+mathbb{D}tau (mathbb{E}xi_1)^2$.



So for the first part I think I can use this
$mathbb{E}S_{tau}=mathbb{E}mathbb{E}(S_{tau}|tau)=sum_{ngeq1}mathbb{E}(xi_1+xi_2+...+xi_{tau}|tau)mathbb{P}(tau=n)=sum_{ngeq 1}nmathbb{E}xi_imathbb{P}(tau=n)=mathbb{E}xi_i sum_{ngeq1}mathbb{P}(tau=n)=mathbb{E}xi_1mathbb{E}tau .$



So am I right?



For the second part I am really not sure what to do.







probability probability-theory random-variables conditional-expectation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 3 at 10:40









AtstovasAtstovas

1159




1159












  • $begingroup$
    What do you mean by $mathbb{D}(X)$?
    $endgroup$
    – Lundborg
    Jan 3 at 10:55


















  • $begingroup$
    What do you mean by $mathbb{D}(X)$?
    $endgroup$
    – Lundborg
    Jan 3 at 10:55
















$begingroup$
What do you mean by $mathbb{D}(X)$?
$endgroup$
– Lundborg
Jan 3 at 10:55




$begingroup$
What do you mean by $mathbb{D}(X)$?
$endgroup$
– Lundborg
Jan 3 at 10:55










1 Answer
1






active

oldest

votes


















2












$begingroup$

For the first question, note that



$$
S_tau = sum_{i=1}^n 1_{(tau leq i)} xi_i
$$



therefore



$$
mathbb{E}(S_tau | tau) = mathbb{E}left(sum_{i=1}^n 1_{(tau leq i)} xi_i Big| tau right) = sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right)
$$



Note now that $1_{(tau leq i)}$ is measurable when given $tau$ and that $xi_i$ are all independent from $tau$ so



$$
mathbb{E}left( 1_{(tau leq i)} xi_i | tau right) = 1_{(tau leq i)} mathbb{E}(xi_i)
$$



In total we get (since $xi_i$ are identically distributed)



$$
mathbb{E}(S_tau | tau) =sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right) = sum_{i=1}^n 1_{(tau leq i)} mathbb{E}(xi_i) = mathbb{E}(xi_1)sum_{i=1}^n 1_{(tau leq i)} = mathbb{E}(xi_1)tau
$$



Taking expectations on both sides yields the second part of the first question.



Assuming by $mathbb{D}$ you mean the variance, you can perform the exact same calculations as above to get



$$
mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1
$$



Then using the law of total variance, we get



$$
mathbb{D}(S_tau) = mathbb{D}(mathbb{E}(S_tau | tau)) + mathbb{E}(mathbb{D}(S_tau | tau)) = mathbb{D}(tau) (mathbb{E}(xi_1))^2 + mathbb{E}(tau) mathbb{D}(xi_1)
$$



as desired.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060443%2fproving-mathbbes-tau-tau-tau-mathbbe-xi-1-and-mathbbes-ta%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    For the first question, note that



    $$
    S_tau = sum_{i=1}^n 1_{(tau leq i)} xi_i
    $$



    therefore



    $$
    mathbb{E}(S_tau | tau) = mathbb{E}left(sum_{i=1}^n 1_{(tau leq i)} xi_i Big| tau right) = sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right)
    $$



    Note now that $1_{(tau leq i)}$ is measurable when given $tau$ and that $xi_i$ are all independent from $tau$ so



    $$
    mathbb{E}left( 1_{(tau leq i)} xi_i | tau right) = 1_{(tau leq i)} mathbb{E}(xi_i)
    $$



    In total we get (since $xi_i$ are identically distributed)



    $$
    mathbb{E}(S_tau | tau) =sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right) = sum_{i=1}^n 1_{(tau leq i)} mathbb{E}(xi_i) = mathbb{E}(xi_1)sum_{i=1}^n 1_{(tau leq i)} = mathbb{E}(xi_1)tau
    $$



    Taking expectations on both sides yields the second part of the first question.



    Assuming by $mathbb{D}$ you mean the variance, you can perform the exact same calculations as above to get



    $$
    mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1
    $$



    Then using the law of total variance, we get



    $$
    mathbb{D}(S_tau) = mathbb{D}(mathbb{E}(S_tau | tau)) + mathbb{E}(mathbb{D}(S_tau | tau)) = mathbb{D}(tau) (mathbb{E}(xi_1))^2 + mathbb{E}(tau) mathbb{D}(xi_1)
    $$



    as desired.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      For the first question, note that



      $$
      S_tau = sum_{i=1}^n 1_{(tau leq i)} xi_i
      $$



      therefore



      $$
      mathbb{E}(S_tau | tau) = mathbb{E}left(sum_{i=1}^n 1_{(tau leq i)} xi_i Big| tau right) = sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right)
      $$



      Note now that $1_{(tau leq i)}$ is measurable when given $tau$ and that $xi_i$ are all independent from $tau$ so



      $$
      mathbb{E}left( 1_{(tau leq i)} xi_i | tau right) = 1_{(tau leq i)} mathbb{E}(xi_i)
      $$



      In total we get (since $xi_i$ are identically distributed)



      $$
      mathbb{E}(S_tau | tau) =sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right) = sum_{i=1}^n 1_{(tau leq i)} mathbb{E}(xi_i) = mathbb{E}(xi_1)sum_{i=1}^n 1_{(tau leq i)} = mathbb{E}(xi_1)tau
      $$



      Taking expectations on both sides yields the second part of the first question.



      Assuming by $mathbb{D}$ you mean the variance, you can perform the exact same calculations as above to get



      $$
      mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1
      $$



      Then using the law of total variance, we get



      $$
      mathbb{D}(S_tau) = mathbb{D}(mathbb{E}(S_tau | tau)) + mathbb{E}(mathbb{D}(S_tau | tau)) = mathbb{D}(tau) (mathbb{E}(xi_1))^2 + mathbb{E}(tau) mathbb{D}(xi_1)
      $$



      as desired.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        For the first question, note that



        $$
        S_tau = sum_{i=1}^n 1_{(tau leq i)} xi_i
        $$



        therefore



        $$
        mathbb{E}(S_tau | tau) = mathbb{E}left(sum_{i=1}^n 1_{(tau leq i)} xi_i Big| tau right) = sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right)
        $$



        Note now that $1_{(tau leq i)}$ is measurable when given $tau$ and that $xi_i$ are all independent from $tau$ so



        $$
        mathbb{E}left( 1_{(tau leq i)} xi_i | tau right) = 1_{(tau leq i)} mathbb{E}(xi_i)
        $$



        In total we get (since $xi_i$ are identically distributed)



        $$
        mathbb{E}(S_tau | tau) =sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right) = sum_{i=1}^n 1_{(tau leq i)} mathbb{E}(xi_i) = mathbb{E}(xi_1)sum_{i=1}^n 1_{(tau leq i)} = mathbb{E}(xi_1)tau
        $$



        Taking expectations on both sides yields the second part of the first question.



        Assuming by $mathbb{D}$ you mean the variance, you can perform the exact same calculations as above to get



        $$
        mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1
        $$



        Then using the law of total variance, we get



        $$
        mathbb{D}(S_tau) = mathbb{D}(mathbb{E}(S_tau | tau)) + mathbb{E}(mathbb{D}(S_tau | tau)) = mathbb{D}(tau) (mathbb{E}(xi_1))^2 + mathbb{E}(tau) mathbb{D}(xi_1)
        $$



        as desired.






        share|cite|improve this answer









        $endgroup$



        For the first question, note that



        $$
        S_tau = sum_{i=1}^n 1_{(tau leq i)} xi_i
        $$



        therefore



        $$
        mathbb{E}(S_tau | tau) = mathbb{E}left(sum_{i=1}^n 1_{(tau leq i)} xi_i Big| tau right) = sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right)
        $$



        Note now that $1_{(tau leq i)}$ is measurable when given $tau$ and that $xi_i$ are all independent from $tau$ so



        $$
        mathbb{E}left( 1_{(tau leq i)} xi_i | tau right) = 1_{(tau leq i)} mathbb{E}(xi_i)
        $$



        In total we get (since $xi_i$ are identically distributed)



        $$
        mathbb{E}(S_tau | tau) =sum_{i=1}^n mathbb{E}left( 1_{(tau leq i)} xi_i big| tau right) = sum_{i=1}^n 1_{(tau leq i)} mathbb{E}(xi_i) = mathbb{E}(xi_1)sum_{i=1}^n 1_{(tau leq i)} = mathbb{E}(xi_1)tau
        $$



        Taking expectations on both sides yields the second part of the first question.



        Assuming by $mathbb{D}$ you mean the variance, you can perform the exact same calculations as above to get



        $$
        mathbb{D}(S_{tau}|tau)= tau mathbb{D}xi_1
        $$



        Then using the law of total variance, we get



        $$
        mathbb{D}(S_tau) = mathbb{D}(mathbb{E}(S_tau | tau)) + mathbb{E}(mathbb{D}(S_tau | tau)) = mathbb{D}(tau) (mathbb{E}(xi_1))^2 + mathbb{E}(tau) mathbb{D}(xi_1)
        $$



        as desired.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 11:07









        LundborgLundborg

        857617




        857617






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060443%2fproving-mathbbes-tau-tau-tau-mathbbe-xi-1-and-mathbbes-ta%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Probability when a professor distributes a quiz and homework assignment to a class of n students.

            Aardman Animations

            Are they similar matrix