Functions whose input is the same as the output?












2












$begingroup$


Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,



$${f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-alpha_2right)}{,_2F_1left(tfrac14,tfrac34,1,,alpha_2right)}=tau}$$





$${f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-alpha_3right)}{,_2F_1left(tfrac13,tfrac23,1,,alpha_3right)}=tau}$$





$${f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-alpha_4right)}{,_2F_1left(tfrac12,tfrac12,1,,alpha_4right)}=tau}$$





where,



$$alpha_2 =frac{64}{64+Big(frac{eta(tau)}{eta(2tau)}Big)^{24}},quad
alpha_3 =frac{27}{27+Big(frac{eta(tau)}{eta(3tau)}Big)^{12}},quad
alpha_4 =frac{16}{16+Big(frac{eta(tau)}{eta(4tau)}Big)^{8}},$$



So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?



Q: What are other not-so-trivial examples of identity functions?



P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpha_1right)$ but it uses the j-function, instead of the Dedekind eta function.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Essentially the same eta quotients are used in this post.
    $endgroup$
    – Tito Piezas III
    Jan 4 at 12:10
















2












$begingroup$


Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,



$${f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-alpha_2right)}{,_2F_1left(tfrac14,tfrac34,1,,alpha_2right)}=tau}$$





$${f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-alpha_3right)}{,_2F_1left(tfrac13,tfrac23,1,,alpha_3right)}=tau}$$





$${f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-alpha_4right)}{,_2F_1left(tfrac12,tfrac12,1,,alpha_4right)}=tau}$$





where,



$$alpha_2 =frac{64}{64+Big(frac{eta(tau)}{eta(2tau)}Big)^{24}},quad
alpha_3 =frac{27}{27+Big(frac{eta(tau)}{eta(3tau)}Big)^{12}},quad
alpha_4 =frac{16}{16+Big(frac{eta(tau)}{eta(4tau)}Big)^{8}},$$



So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?



Q: What are other not-so-trivial examples of identity functions?



P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpha_1right)$ but it uses the j-function, instead of the Dedekind eta function.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Essentially the same eta quotients are used in this post.
    $endgroup$
    – Tito Piezas III
    Jan 4 at 12:10














2












2








2


1



$begingroup$


Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,



$${f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-alpha_2right)}{,_2F_1left(tfrac14,tfrac34,1,,alpha_2right)}=tau}$$





$${f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-alpha_3right)}{,_2F_1left(tfrac13,tfrac23,1,,alpha_3right)}=tau}$$





$${f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-alpha_4right)}{,_2F_1left(tfrac12,tfrac12,1,,alpha_4right)}=tau}$$





where,



$$alpha_2 =frac{64}{64+Big(frac{eta(tau)}{eta(2tau)}Big)^{24}},quad
alpha_3 =frac{27}{27+Big(frac{eta(tau)}{eta(3tau)}Big)^{12}},quad
alpha_4 =frac{16}{16+Big(frac{eta(tau)}{eta(4tau)}Big)^{8}},$$



So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?



Q: What are other not-so-trivial examples of identity functions?



P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpha_1right)$ but it uses the j-function, instead of the Dedekind eta function.










share|cite|improve this question











$endgroup$




Given the Dedekind eta function $eta(tau)$ and complex number $tau$. I came across these family of functions,



$${f_2(tau)= frac{i}{sqrt{2}}frac{,_2F_1left(tfrac14,tfrac34,1,,1-alpha_2right)}{,_2F_1left(tfrac14,tfrac34,1,,alpha_2right)}=tau}$$





$${f_3(tau)= frac{i}{sqrt{3}}frac{,_2F_1left(tfrac13,tfrac23,1,,1-alpha_3right)}{,_2F_1left(tfrac13,tfrac23,1,,alpha_3right)}=tau}$$





$${f_4(tau)= frac{i}{sqrt{4}}frac{,_2F_1left(tfrac12,tfrac12,1,,1-alpha_4right)}{,_2F_1left(tfrac12,tfrac12,1,,alpha_4right)}=tau}$$





where,



$$alpha_2 =frac{64}{64+Big(frac{eta(tau)}{eta(2tau)}Big)^{24}},quad
alpha_3 =frac{27}{27+Big(frac{eta(tau)}{eta(3tau)}Big)^{12}},quad
alpha_4 =frac{16}{16+Big(frac{eta(tau)}{eta(4tau)}Big)^{8}},$$



So the input variable is $tau$ and the output is also $tau$. Presumably these are identity functions $f(x)=x$?



Q: What are other not-so-trivial examples of identity functions?



P.S. There is a $f_1(tau)$ using $,_2F_1left(tfrac16,tfrac56,1,,alpha_1right)$ but it uses the j-function, instead of the Dedekind eta function.







complex-analysis functions terminology special-functions hypergeometric-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 4 at 12:05







Tito Piezas III

















asked Jan 3 at 9:55









Tito Piezas IIITito Piezas III

27.8k369178




27.8k369178












  • $begingroup$
    Essentially the same eta quotients are used in this post.
    $endgroup$
    – Tito Piezas III
    Jan 4 at 12:10


















  • $begingroup$
    Essentially the same eta quotients are used in this post.
    $endgroup$
    – Tito Piezas III
    Jan 4 at 12:10
















$begingroup$
Essentially the same eta quotients are used in this post.
$endgroup$
– Tito Piezas III
Jan 4 at 12:10




$begingroup$
Essentially the same eta quotients are used in this post.
$endgroup$
– Tito Piezas III
Jan 4 at 12:10










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060410%2ffunctions-whose-input-is-the-same-as-the-output%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060410%2ffunctions-whose-input-is-the-same-as-the-output%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix