Prove that...












0












$begingroup$


One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Smelly like integration by parts.
    $endgroup$
    – Rasmus
    Aug 9 '13 at 14:42
















0












$begingroup$


One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Smelly like integration by parts.
    $endgroup$
    – Rasmus
    Aug 9 '13 at 14:42














0












0








0





$begingroup$


One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!










share|cite|improve this question











$endgroup$




One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!







calculus integration reduction-formula






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 23:08









clathratus

5,1141439




5,1141439










asked Aug 9 '13 at 14:37







user89632



















  • $begingroup$
    Smelly like integration by parts.
    $endgroup$
    – Rasmus
    Aug 9 '13 at 14:42


















  • $begingroup$
    Smelly like integration by parts.
    $endgroup$
    – Rasmus
    Aug 9 '13 at 14:42
















$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42




$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42










4 Answers
4






active

oldest

votes


















3












$begingroup$

Using integration by parts,
$$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
$$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$



$$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$



$$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$



$$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration



$$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How about the +C?
    $endgroup$
    – user89632
    Aug 9 '13 at 14:47










  • $begingroup$
    @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
    $endgroup$
    – lab bhattacharjee
    Aug 9 '13 at 14:53



















0












$begingroup$

Hint:



Use the fact that



$$tan^2 (theta)+1=sec^2(theta)$$



Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Hint:



    $$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$



    Integrate by parts.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Hint:



      remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f463683%2fprove-that-int-secn-theta-frac-tan-theta-secn-2-thetan-1-f%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown
























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        Using integration by parts,
        $$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
        $$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$



        $$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration



        $$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          How about the +C?
          $endgroup$
          – user89632
          Aug 9 '13 at 14:47










        • $begingroup$
          @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
          $endgroup$
          – lab bhattacharjee
          Aug 9 '13 at 14:53
















        3












        $begingroup$

        Using integration by parts,
        $$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
        $$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$



        $$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration



        $$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$






        share|cite|improve this answer











        $endgroup$













        • $begingroup$
          How about the +C?
          $endgroup$
          – user89632
          Aug 9 '13 at 14:47










        • $begingroup$
          @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
          $endgroup$
          – lab bhattacharjee
          Aug 9 '13 at 14:53














        3












        3








        3





        $begingroup$

        Using integration by parts,
        $$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
        $$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$



        $$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration



        $$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$






        share|cite|improve this answer











        $endgroup$



        Using integration by parts,
        $$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
        $$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$



        $$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$



        $$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration



        $$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 9 '13 at 14:51

























        answered Aug 9 '13 at 14:42









        lab bhattacharjeelab bhattacharjee

        228k15159279




        228k15159279












        • $begingroup$
          How about the +C?
          $endgroup$
          – user89632
          Aug 9 '13 at 14:47










        • $begingroup$
          @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
          $endgroup$
          – lab bhattacharjee
          Aug 9 '13 at 14:53


















        • $begingroup$
          How about the +C?
          $endgroup$
          – user89632
          Aug 9 '13 at 14:47










        • $begingroup$
          @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
          $endgroup$
          – lab bhattacharjee
          Aug 9 '13 at 14:53
















        $begingroup$
        How about the +C?
        $endgroup$
        – user89632
        Aug 9 '13 at 14:47




        $begingroup$
        How about the +C?
        $endgroup$
        – user89632
        Aug 9 '13 at 14:47












        $begingroup$
        @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
        $endgroup$
        – lab bhattacharjee
        Aug 9 '13 at 14:53




        $begingroup$
        @user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
        $endgroup$
        – lab bhattacharjee
        Aug 9 '13 at 14:53











        0












        $begingroup$

        Hint:



        Use the fact that



        $$tan^2 (theta)+1=sec^2(theta)$$



        Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$






        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          Hint:



          Use the fact that



          $$tan^2 (theta)+1=sec^2(theta)$$



          Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$






          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            Hint:



            Use the fact that



            $$tan^2 (theta)+1=sec^2(theta)$$



            Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$






            share|cite|improve this answer









            $endgroup$



            Hint:



            Use the fact that



            $$tan^2 (theta)+1=sec^2(theta)$$



            Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Aug 9 '13 at 14:42









            InceptioInceptio

            7,0891635




            7,0891635























                0












                $begingroup$

                Hint:



                $$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$



                Integrate by parts.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  Hint:



                  $$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$



                  Integrate by parts.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    Hint:



                    $$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$



                    Integrate by parts.






                    share|cite|improve this answer









                    $endgroup$



                    Hint:



                    $$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$



                    Integrate by parts.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Aug 9 '13 at 14:43









                    N. S.N. S.

                    105k7115210




                    105k7115210























                        0












                        $begingroup$

                        Hint:



                        remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Hint:



                          remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Hint:



                            remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$






                            share|cite|improve this answer









                            $endgroup$



                            Hint:



                            remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Aug 9 '13 at 14:49









                            Doctor DanDoctor Dan

                            64137




                            64137






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f463683%2fprove-that-int-secn-theta-frac-tan-theta-secn-2-thetan-1-f%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Probability when a professor distributes a quiz and homework assignment to a class of n students.

                                Aardman Animations

                                Are they similar matrix