Prove that...
$begingroup$
One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!
calculus integration reduction-formula
$endgroup$
add a comment |
$begingroup$
One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!
calculus integration reduction-formula
$endgroup$
$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42
add a comment |
$begingroup$
One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!
calculus integration reduction-formula
$endgroup$
One of the problems in my homework set ask me to prove the following identity:
$$int{sec^{n}(theta)}dtheta=frac{tan(theta)sec^{n-2}(theta)}{n-1}-frac{n-2}{n-1}int{sec^{n-2}(theta)dtheta}$$
Can someone give me a hint how to start?
Thanks!
calculus integration reduction-formula
calculus integration reduction-formula
edited Jan 6 at 23:08
clathratus
5,1141439
5,1141439
asked Aug 9 '13 at 14:37
user89632
$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42
add a comment |
$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42
$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42
$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Using integration by parts,
$$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
$$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$
$$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration
$$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$
$endgroup$
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
add a comment |
$begingroup$
Hint:
Use the fact that
$$tan^2 (theta)+1=sec^2(theta)$$
Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$
$endgroup$
add a comment |
$begingroup$
Hint:
$$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$
Integrate by parts.
$endgroup$
add a comment |
$begingroup$
Hint:
remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f463683%2fprove-that-int-secn-theta-frac-tan-theta-secn-2-thetan-1-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using integration by parts,
$$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
$$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$
$$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration
$$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$
$endgroup$
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
add a comment |
$begingroup$
Using integration by parts,
$$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
$$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$
$$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration
$$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$
$endgroup$
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
add a comment |
$begingroup$
Using integration by parts,
$$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
$$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$
$$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration
$$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$
$endgroup$
Using integration by parts,
$$intsec^nxdx=intsec^{n-2}xcdot sec^2xdx$$
$$=sec^{n-2}xintsec^2xdx-intleft(frac{d(sec^{n-2}x)}{dx}cdot sec^2xdxright)dx $$
$$=sec^{n-2}xtan x-intleft((n-2)sec^{n-3}x(sec xtan x)cdot tan xright)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^{n-2}x(sec^2x-1)dx $$
$$=sec^{n-2}xtan x-(n-2)intsec^nxdx+(n-2)intsec^{n-2}xdx+C $$ where $C$ is an arbitrary constant for indefinite integration
$$implies (1+n-2)sec^nxdx=sec^{n-2}xtan x+(n-2)intsec^{n-2}xdx+C$$
edited Aug 9 '13 at 14:51
answered Aug 9 '13 at 14:42
lab bhattacharjeelab bhattacharjee
228k15159279
228k15159279
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
add a comment |
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
How about the +C?
$endgroup$
– user89632
Aug 9 '13 at 14:47
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
$begingroup$
@user89632, added the arbitrary constant, but the please check the problem. It's $+(n-2)sec^{n-2}xdx$ also replace $theta$ with $x$
$endgroup$
– lab bhattacharjee
Aug 9 '13 at 14:53
add a comment |
$begingroup$
Hint:
Use the fact that
$$tan^2 (theta)+1=sec^2(theta)$$
Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$
$endgroup$
add a comment |
$begingroup$
Hint:
Use the fact that
$$tan^2 (theta)+1=sec^2(theta)$$
Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$
$endgroup$
add a comment |
$begingroup$
Hint:
Use the fact that
$$tan^2 (theta)+1=sec^2(theta)$$
Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$
$endgroup$
Hint:
Use the fact that
$$tan^2 (theta)+1=sec^2(theta)$$
Now , $sec^n theta=sec^{n-2} theta cdot sec^2 theta=sec^{n-2}theta cdot (tan^2 theta+1)$
answered Aug 9 '13 at 14:42
InceptioInceptio
7,0891635
7,0891635
add a comment |
add a comment |
$begingroup$
Hint:
$$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$
Integrate by parts.
$endgroup$
add a comment |
$begingroup$
Hint:
$$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$
Integrate by parts.
$endgroup$
add a comment |
$begingroup$
Hint:
$$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$
Integrate by parts.
$endgroup$
Hint:
$$int{sec^{n}(theta)}dtheta= int{sec^{n-2}(theta)} sec^2(theta) dtheta$$
Integrate by parts.
answered Aug 9 '13 at 14:43
N. S.N. S.
105k7115210
105k7115210
add a comment |
add a comment |
$begingroup$
Hint:
remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$
$endgroup$
add a comment |
$begingroup$
Hint:
remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$
$endgroup$
add a comment |
$begingroup$
Hint:
remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$
$endgroup$
Hint:
remember that $d(tan theta) = frac{dtheta}{cos^2theta} = sec^2 theta dtheta$, integrate by parts, then collect the like terms with $int frac{dtheta}{cos^n theta}$
answered Aug 9 '13 at 14:49
Doctor DanDoctor Dan
64137
64137
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f463683%2fprove-that-int-secn-theta-frac-tan-theta-secn-2-thetan-1-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Smelly like integration by parts.
$endgroup$
– Rasmus
Aug 9 '13 at 14:42