Determinant of this $N$ x $N$ matrix
$begingroup$
Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
Now consider the polynomial:($a=tau^2-2)$
$$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$
Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
(c_{1} & c_{2} ... &c_{N})
end{matrix}$
I want to calculate the NxN determinant of A:
$$ begin{matrix}
a & 1 & 0 & 0 .....&0 \
1 & a & 1 & 0.......&0 \
0 & 1 & a &1....... &0 \
0 & 0 & 1 &a.....\
.\
.\
0.\
end{matrix}
$$
So we have repeating blocks of $begin{matrix}
a & 1\
1 & a\
end{matrix}$ until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
-a & -1\
-1 & -a\
end{matrix}$ from the $(nu+1)^{th}$ row and a block $begin{matrix}
a & i\
i & -a\
end{matrix}$ in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$
determinant
$endgroup$
add a comment |
$begingroup$
Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
Now consider the polynomial:($a=tau^2-2)$
$$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$
Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
(c_{1} & c_{2} ... &c_{N})
end{matrix}$
I want to calculate the NxN determinant of A:
$$ begin{matrix}
a & 1 & 0 & 0 .....&0 \
1 & a & 1 & 0.......&0 \
0 & 1 & a &1....... &0 \
0 & 0 & 1 &a.....\
.\
.\
0.\
end{matrix}
$$
So we have repeating blocks of $begin{matrix}
a & 1\
1 & a\
end{matrix}$ until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
-a & -1\
-1 & -a\
end{matrix}$ from the $(nu+1)^{th}$ row and a block $begin{matrix}
a & i\
i & -a\
end{matrix}$ in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$
determinant
$endgroup$
add a comment |
$begingroup$
Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
Now consider the polynomial:($a=tau^2-2)$
$$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$
Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
(c_{1} & c_{2} ... &c_{N})
end{matrix}$
I want to calculate the NxN determinant of A:
$$ begin{matrix}
a & 1 & 0 & 0 .....&0 \
1 & a & 1 & 0.......&0 \
0 & 1 & a &1....... &0 \
0 & 0 & 1 &a.....\
.\
.\
0.\
end{matrix}
$$
So we have repeating blocks of $begin{matrix}
a & 1\
1 & a\
end{matrix}$ until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
-a & -1\
-1 & -a\
end{matrix}$ from the $(nu+1)^{th}$ row and a block $begin{matrix}
a & i\
i & -a\
end{matrix}$ in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$
determinant
$endgroup$
Let $nu$ be the minimum integer which satisfies $2sin(frac{pi nu}{2(N+1)})>tau$, for $N$ an integer, and $tau$ an arbitrary positive number. Since the LHS is bounded and RHS is not, there might be cases where no such value of $nu$ satisfying the inequality does exist. In that case, we will take $nu=0$.
Now consider the polynomial:($a=tau^2-2)$
$$sum_{i=1}^{nu-1}ac_{i}^2-sum_{i=nu}^{N}ac_{i}^2+2sum_{i=1}^{nu-2}c_{i}c_{i+1}+2ic_{nu}c_{nu-1}-2sum_{i=nu}^{N}c_{i}c_{i+1}$$
Suppose I want to express the above as $c^{T}Ac$ with $c^{T}=begin{matrix}
(c_{1} & c_{2} ... &c_{N})
end{matrix}$
I want to calculate the NxN determinant of A:
$$ begin{matrix}
a & 1 & 0 & 0 .....&0 \
1 & a & 1 & 0.......&0 \
0 & 1 & a &1....... &0 \
0 & 0 & 1 &a.....\
.\
.\
0.\
end{matrix}
$$
So we have repeating blocks of $begin{matrix}
a & 1\
1 & a\
end{matrix}$ until the $(nu-2)^{th}$ row and similar repeating blocks of $begin{matrix}
-a & -1\
-1 & -a\
end{matrix}$ from the $(nu+1)^{th}$ row and a block $begin{matrix}
a & i\
i & -a\
end{matrix}$ in the $(nu-1)^{th}$ and $(nu)^{th}$ rows. I could not write down the matrix here, so I would be obliged greatly if you check it yourself. As you can guess I am doing to this calculate $int_{-infty}^{infty}dc e^{-c^{T}Ac}$
determinant
determinant
edited Jan 7 at 3:21
Gnumbertester
6841114
6841114
asked Jan 7 at 2:16
Mani JhaMani Jha
94
94
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$D_n=begin{vmatrix}
a & 1 & 0 & cdots & 0 & 0 & 0\
1 & a & 1 & cdots & 0 & 0 & 0\
0 & 1 & a & cdots & 0 & 0 & 0\
cdots & cdots & cdots & cdots &cdots & cdots & cdots\
0 & 0 & 0 & cdots & a & 1 & 0\
0 & 0 & 0 & cdots & 1 & a & 1\
0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$
$$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
Determinants $D_n$ is Chebyshev polynomials of the second kind:
$$D_n=U_nleft(frac{a}2right)$$
https://en.wikipedia.org/wiki/Chebyshev_polynomials
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
$endgroup$
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064594%2fdeterminant-of-this-n-x-n-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$D_n=begin{vmatrix}
a & 1 & 0 & cdots & 0 & 0 & 0\
1 & a & 1 & cdots & 0 & 0 & 0\
0 & 1 & a & cdots & 0 & 0 & 0\
cdots & cdots & cdots & cdots &cdots & cdots & cdots\
0 & 0 & 0 & cdots & a & 1 & 0\
0 & 0 & 0 & cdots & 1 & a & 1\
0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$
$$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
Determinants $D_n$ is Chebyshev polynomials of the second kind:
$$D_n=U_nleft(frac{a}2right)$$
https://en.wikipedia.org/wiki/Chebyshev_polynomials
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
$endgroup$
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
add a comment |
$begingroup$
$$D_n=begin{vmatrix}
a & 1 & 0 & cdots & 0 & 0 & 0\
1 & a & 1 & cdots & 0 & 0 & 0\
0 & 1 & a & cdots & 0 & 0 & 0\
cdots & cdots & cdots & cdots &cdots & cdots & cdots\
0 & 0 & 0 & cdots & a & 1 & 0\
0 & 0 & 0 & cdots & 1 & a & 1\
0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$
$$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
Determinants $D_n$ is Chebyshev polynomials of the second kind:
$$D_n=U_nleft(frac{a}2right)$$
https://en.wikipedia.org/wiki/Chebyshev_polynomials
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
$endgroup$
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
add a comment |
$begingroup$
$$D_n=begin{vmatrix}
a & 1 & 0 & cdots & 0 & 0 & 0\
1 & a & 1 & cdots & 0 & 0 & 0\
0 & 1 & a & cdots & 0 & 0 & 0\
cdots & cdots & cdots & cdots &cdots & cdots & cdots\
0 & 0 & 0 & cdots & a & 1 & 0\
0 & 0 & 0 & cdots & 1 & a & 1\
0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$
$$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
Determinants $D_n$ is Chebyshev polynomials of the second kind:
$$D_n=U_nleft(frac{a}2right)$$
https://en.wikipedia.org/wiki/Chebyshev_polynomials
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
$endgroup$
$$D_n=begin{vmatrix}
a & 1 & 0 & cdots & 0 & 0 & 0\
1 & a & 1 & cdots & 0 & 0 & 0\
0 & 1 & a & cdots & 0 & 0 & 0\
cdots & cdots & cdots & cdots &cdots & cdots & cdots\
0 & 0 & 0 & cdots & a & 1 & 0\
0 & 0 & 0 & cdots & 1 & a & 1\
0 & 0 & 0 &cdots & 0 & 1 & aend{vmatrix}$$
$$D_1=a,\D_2={{a}^{2}}-1,\D_3={{a}^{3}}-2 a,\D_4={{a}^{4}}-3 {{a}^{2}}+1,\D_5={{a}^{5}}-4 {{a}^{3}}+3a,\ dots\ D_n=aD_{n-1}-D_{n-2}$$
Determinants $D_n$ is Chebyshev polynomials of the second kind:
$$D_n=U_nleft(frac{a}2right)$$
https://en.wikipedia.org/wiki/Chebyshev_polynomials
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
answered Jan 7 at 8:26
Aleksas DomarkasAleksas Domarkas
1,62317
1,62317
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
add a comment |
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Thank you for your answer but after there are blocks of $begin{matrix} -a & -1\ -1 & -a\ end{matrix}$ after the $(nu)^{th}$ row
$endgroup$
– Mani Jha
Jan 7 at 11:43
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
$begingroup$
Can you find the inverse of the matrix you calculated the determinant of? The adjoint calculation gets messy..is there a shorter way?
$endgroup$
– Mani Jha
Jan 8 at 10:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064594%2fdeterminant-of-this-n-x-n-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown