On covariance and pseudocovariance of a complex random vector
$begingroup$
I am currently studying complex FastICA and the paper says that
Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.
I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.
We have the covariance matrix as
begin{align}
operatorname{cov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
&= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^H]\
end{align}
and the pseudocovariance
begin{align}
operatorname{pcov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
&= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^T]\
end{align}
I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.
If I were to write out the matrix,
begin{align}
E[mathbf{s}mathbf{s}^H]
&=Eleft{begin{bmatrix}
s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
vdots & vdots &ddots & vdots\
s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
end{bmatrix}right}
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=Eleft{begin{bmatrix}
s_1s_1 & s_1s_2 &cdots & s_1s_n\
s_2s_1 & s_2s_2 &cdots & s_2s_n\
vdots & vdots &ddots & vdots\
s_ns_1 & s_ns_2 &cdots & s_ns_n\
end{bmatrix}right}
end{align}
I still can't quite figure how all of these eventually becomes identity and zeros.
linear-algebra statistics complex-numbers random-variables
$endgroup$
add a comment |
$begingroup$
I am currently studying complex FastICA and the paper says that
Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.
I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.
We have the covariance matrix as
begin{align}
operatorname{cov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
&= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^H]\
end{align}
and the pseudocovariance
begin{align}
operatorname{pcov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
&= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^T]\
end{align}
I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.
If I were to write out the matrix,
begin{align}
E[mathbf{s}mathbf{s}^H]
&=Eleft{begin{bmatrix}
s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
vdots & vdots &ddots & vdots\
s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
end{bmatrix}right}
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=Eleft{begin{bmatrix}
s_1s_1 & s_1s_2 &cdots & s_1s_n\
s_2s_1 & s_2s_2 &cdots & s_2s_n\
vdots & vdots &ddots & vdots\
s_ns_1 & s_ns_2 &cdots & s_ns_n\
end{bmatrix}right}
end{align}
I still can't quite figure how all of these eventually becomes identity and zeros.
linear-algebra statistics complex-numbers random-variables
$endgroup$
add a comment |
$begingroup$
I am currently studying complex FastICA and the paper says that
Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.
I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.
We have the covariance matrix as
begin{align}
operatorname{cov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
&= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^H]\
end{align}
and the pseudocovariance
begin{align}
operatorname{pcov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
&= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^T]\
end{align}
I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.
If I were to write out the matrix,
begin{align}
E[mathbf{s}mathbf{s}^H]
&=Eleft{begin{bmatrix}
s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
vdots & vdots &ddots & vdots\
s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
end{bmatrix}right}
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=Eleft{begin{bmatrix}
s_1s_1 & s_1s_2 &cdots & s_1s_n\
s_2s_1 & s_2s_2 &cdots & s_2s_n\
vdots & vdots &ddots & vdots\
s_ns_1 & s_ns_2 &cdots & s_ns_n\
end{bmatrix}right}
end{align}
I still can't quite figure how all of these eventually becomes identity and zeros.
linear-algebra statistics complex-numbers random-variables
$endgroup$
I am currently studying complex FastICA and the paper says that
Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.
I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.
We have the covariance matrix as
begin{align}
operatorname{cov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
&= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^H]\
end{align}
and the pseudocovariance
begin{align}
operatorname{pcov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
&= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^T]\
end{align}
I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.
If I were to write out the matrix,
begin{align}
E[mathbf{s}mathbf{s}^H]
&=Eleft{begin{bmatrix}
s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
vdots & vdots &ddots & vdots\
s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
end{bmatrix}right}
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=Eleft{begin{bmatrix}
s_1s_1 & s_1s_2 &cdots & s_1s_n\
s_2s_1 & s_2s_2 &cdots & s_2s_n\
vdots & vdots &ddots & vdots\
s_ns_1 & s_ns_2 &cdots & s_ns_n\
end{bmatrix}right}
end{align}
I still can't quite figure how all of these eventually becomes identity and zeros.
linear-algebra statistics complex-numbers random-variables
linear-algebra statistics complex-numbers random-variables
edited Dec 24 '18 at 7:33
Karn Watcharasupat
asked Dec 24 '18 at 5:10
Karn WatcharasupatKarn Watcharasupat
3,9742526
3,9742526
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Okay now that I ponder for a few more hours.
I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have
begin{align}
E[mathbf{s}mathbf{s}^H]
&=operatorname{diag}(E[s_is_i^*])\
&=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
&=operatorname{diag}(E[a^2+b^2])\
&=operatorname{diag}(E[a^2]+E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
&& (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
&=operatorname{diag}(operatorname{Var}[s_i]+0)
&& (because E[a]=E[b]=0,\
&&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
&=operatorname{diag}(1)
&& (because operatorname{Var}[s]:=1)\
&=mathbf{I}_n
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=operatorname{diag}(E[s_is_i])\
&=operatorname{diag}(E[s_i^2])\
&=operatorname{diag}(E[a^2+2abi-b^2])\
&=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
&=operatorname{diag}(E[a^2]-E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
&=operatorname{diag}(0)\
&=mathbf{0}_n
end{align}
I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050959%2fon-covariance-and-pseudocovariance-of-a-complex-random-vector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Okay now that I ponder for a few more hours.
I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have
begin{align}
E[mathbf{s}mathbf{s}^H]
&=operatorname{diag}(E[s_is_i^*])\
&=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
&=operatorname{diag}(E[a^2+b^2])\
&=operatorname{diag}(E[a^2]+E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
&& (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
&=operatorname{diag}(operatorname{Var}[s_i]+0)
&& (because E[a]=E[b]=0,\
&&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
&=operatorname{diag}(1)
&& (because operatorname{Var}[s]:=1)\
&=mathbf{I}_n
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=operatorname{diag}(E[s_is_i])\
&=operatorname{diag}(E[s_i^2])\
&=operatorname{diag}(E[a^2+2abi-b^2])\
&=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
&=operatorname{diag}(E[a^2]-E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
&=operatorname{diag}(0)\
&=mathbf{0}_n
end{align}
I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.
$endgroup$
add a comment |
$begingroup$
Okay now that I ponder for a few more hours.
I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have
begin{align}
E[mathbf{s}mathbf{s}^H]
&=operatorname{diag}(E[s_is_i^*])\
&=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
&=operatorname{diag}(E[a^2+b^2])\
&=operatorname{diag}(E[a^2]+E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
&& (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
&=operatorname{diag}(operatorname{Var}[s_i]+0)
&& (because E[a]=E[b]=0,\
&&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
&=operatorname{diag}(1)
&& (because operatorname{Var}[s]:=1)\
&=mathbf{I}_n
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=operatorname{diag}(E[s_is_i])\
&=operatorname{diag}(E[s_i^2])\
&=operatorname{diag}(E[a^2+2abi-b^2])\
&=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
&=operatorname{diag}(E[a^2]-E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
&=operatorname{diag}(0)\
&=mathbf{0}_n
end{align}
I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.
$endgroup$
add a comment |
$begingroup$
Okay now that I ponder for a few more hours.
I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have
begin{align}
E[mathbf{s}mathbf{s}^H]
&=operatorname{diag}(E[s_is_i^*])\
&=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
&=operatorname{diag}(E[a^2+b^2])\
&=operatorname{diag}(E[a^2]+E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
&& (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
&=operatorname{diag}(operatorname{Var}[s_i]+0)
&& (because E[a]=E[b]=0,\
&&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
&=operatorname{diag}(1)
&& (because operatorname{Var}[s]:=1)\
&=mathbf{I}_n
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=operatorname{diag}(E[s_is_i])\
&=operatorname{diag}(E[s_i^2])\
&=operatorname{diag}(E[a^2+2abi-b^2])\
&=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
&=operatorname{diag}(E[a^2]-E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
&=operatorname{diag}(0)\
&=mathbf{0}_n
end{align}
I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.
$endgroup$
Okay now that I ponder for a few more hours.
I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have
begin{align}
E[mathbf{s}mathbf{s}^H]
&=operatorname{diag}(E[s_is_i^*])\
&=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
&=operatorname{diag}(E[a^2+b^2])\
&=operatorname{diag}(E[a^2]+E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
&& (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
&=operatorname{diag}(operatorname{Var}[s_i]+0)
&& (because E[a]=E[b]=0,\
&&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
&=operatorname{diag}(1)
&& (because operatorname{Var}[s]:=1)\
&=mathbf{I}_n
end{align}
and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=operatorname{diag}(E[s_is_i])\
&=operatorname{diag}(E[s_i^2])\
&=operatorname{diag}(E[a^2+2abi-b^2])\
&=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
&=operatorname{diag}(E[a^2]-E[b^2])\
&=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
&=operatorname{diag}(0)\
&=mathbf{0}_n
end{align}
I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.
answered Dec 24 '18 at 7:39
Karn WatcharasupatKarn Watcharasupat
3,9742526
3,9742526
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050959%2fon-covariance-and-pseudocovariance-of-a-complex-random-vector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown