On covariance and pseudocovariance of a complex random vector












0












$begingroup$


I am currently studying complex FastICA and the paper says that




Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.




I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.



We have the covariance matrix as
begin{align}
operatorname{cov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
&= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^H]\
end{align}

and the pseudocovariance
begin{align}
operatorname{pcov}(mathbf{s})
&= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
&= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
&= E[mathbf{s}mathbf{s}^T]\
end{align}

I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.



If I were to write out the matrix,
begin{align}
E[mathbf{s}mathbf{s}^H]
&=Eleft{begin{bmatrix}
s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
vdots & vdots &ddots & vdots\
s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
end{bmatrix}right}
end{align}

and
begin{align}
E[mathbf{s}mathbf{s}^T]
&=Eleft{begin{bmatrix}
s_1s_1 & s_1s_2 &cdots & s_1s_n\
s_2s_1 & s_2s_2 &cdots & s_2s_n\
vdots & vdots &ddots & vdots\
s_ns_1 & s_ns_2 &cdots & s_ns_n\
end{bmatrix}right}
end{align}



I still can't quite figure how all of these eventually becomes identity and zeros.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I am currently studying complex FastICA and the paper says that




    Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.




    I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.



    We have the covariance matrix as
    begin{align}
    operatorname{cov}(mathbf{s})
    &= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
    &= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
    &= E[mathbf{s}mathbf{s}^H]\
    end{align}

    and the pseudocovariance
    begin{align}
    operatorname{pcov}(mathbf{s})
    &= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
    &= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
    &= E[mathbf{s}mathbf{s}^T]\
    end{align}

    I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.



    If I were to write out the matrix,
    begin{align}
    E[mathbf{s}mathbf{s}^H]
    &=Eleft{begin{bmatrix}
    s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
    s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
    vdots & vdots &ddots & vdots\
    s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
    end{bmatrix}right}
    end{align}

    and
    begin{align}
    E[mathbf{s}mathbf{s}^T]
    &=Eleft{begin{bmatrix}
    s_1s_1 & s_1s_2 &cdots & s_1s_n\
    s_2s_1 & s_2s_2 &cdots & s_2s_n\
    vdots & vdots &ddots & vdots\
    s_ns_1 & s_ns_2 &cdots & s_ns_n\
    end{bmatrix}right}
    end{align}



    I still can't quite figure how all of these eventually becomes identity and zeros.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      I am currently studying complex FastICA and the paper says that




      Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.




      I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.



      We have the covariance matrix as
      begin{align}
      operatorname{cov}(mathbf{s})
      &= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
      &= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
      &= E[mathbf{s}mathbf{s}^H]\
      end{align}

      and the pseudocovariance
      begin{align}
      operatorname{pcov}(mathbf{s})
      &= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
      &= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
      &= E[mathbf{s}mathbf{s}^T]\
      end{align}

      I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.



      If I were to write out the matrix,
      begin{align}
      E[mathbf{s}mathbf{s}^H]
      &=Eleft{begin{bmatrix}
      s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
      s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
      vdots & vdots &ddots & vdots\
      s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
      end{bmatrix}right}
      end{align}

      and
      begin{align}
      E[mathbf{s}mathbf{s}^T]
      &=Eleft{begin{bmatrix}
      s_1s_1 & s_1s_2 &cdots & s_1s_n\
      s_2s_1 & s_2s_2 &cdots & s_2s_n\
      vdots & vdots &ddots & vdots\
      s_ns_1 & s_ns_2 &cdots & s_ns_n\
      end{bmatrix}right}
      end{align}



      I still can't quite figure how all of these eventually becomes identity and zeros.










      share|cite|improve this question











      $endgroup$




      I am currently studying complex FastICA and the paper says that




      Suppose $mathbf{s}$ is a $ntimes1$ complex random vector. If $mathbf{s}$ has zero mean, unit variance, and uncorrelated real and imaginary part of equal variances, then $E[mathbf{s}mathbf{s}^H]=mathbf{I}_n$ and $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$.




      I don't quite get how $E[mathbf{s}mathbf{s}^T]=mathbf{0}_n$ come about from the conditions.



      We have the covariance matrix as
      begin{align}
      operatorname{cov}(mathbf{s})
      &= E[mathbf{s}mathbf{s}^H]-E[mathbf{s}]E[mathbf{s}^H] \
      &= E[mathbf{s}mathbf{s}^H]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
      &= E[mathbf{s}mathbf{s}^H]\
      end{align}

      and the pseudocovariance
      begin{align}
      operatorname{pcov}(mathbf{s})
      &= E[mathbf{s}mathbf{s}^T]-E[mathbf{s}]E[mathbf{s}^T] \
      &= E[mathbf{s}mathbf{s}^T]-mathbf{0}_{ntimes1}mathbf{0}_{1times n}\
      &= E[mathbf{s}mathbf{s}^T]\
      end{align}

      I don't quite get how to equate the last line of covariance matrix to identity and the pseucovariance to zero.



      If I were to write out the matrix,
      begin{align}
      E[mathbf{s}mathbf{s}^H]
      &=Eleft{begin{bmatrix}
      s_1s_1^* & s_1s_2^* &cdots & s_1s_n^*\
      s_2s_1^* & s_2s_2^* &cdots & s_2s_n^*\
      vdots & vdots &ddots & vdots\
      s_ns_1^* & s_ns_2^* &cdots & s_ns_n^*\
      end{bmatrix}right}
      end{align}

      and
      begin{align}
      E[mathbf{s}mathbf{s}^T]
      &=Eleft{begin{bmatrix}
      s_1s_1 & s_1s_2 &cdots & s_1s_n\
      s_2s_1 & s_2s_2 &cdots & s_2s_n\
      vdots & vdots &ddots & vdots\
      s_ns_1 & s_ns_2 &cdots & s_ns_n\
      end{bmatrix}right}
      end{align}



      I still can't quite figure how all of these eventually becomes identity and zeros.







      linear-algebra statistics complex-numbers random-variables






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 24 '18 at 7:33







      Karn Watcharasupat

















      asked Dec 24 '18 at 5:10









      Karn WatcharasupatKarn Watcharasupat

      3,9742526




      3,9742526






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Okay now that I ponder for a few more hours.



          I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have



          begin{align}
          E[mathbf{s}mathbf{s}^H]
          &=operatorname{diag}(E[s_is_i^*])\
          &=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
          &=operatorname{diag}(E[a^2+b^2])\
          &=operatorname{diag}(E[a^2]+E[b^2])\
          &=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
          && (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
          &=operatorname{diag}(operatorname{Var}[s_i]+0)
          && (because E[a]=E[b]=0,\
          &&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
          &=operatorname{diag}(1)
          && (because operatorname{Var}[s]:=1)\
          &=mathbf{I}_n
          end{align}

          and
          begin{align}
          E[mathbf{s}mathbf{s}^T]
          &=operatorname{diag}(E[s_is_i])\
          &=operatorname{diag}(E[s_i^2])\
          &=operatorname{diag}(E[a^2+2abi-b^2])\
          &=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
          &=operatorname{diag}(E[a^2]-E[b^2])\
          &=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
          &=operatorname{diag}(0)\
          &=mathbf{0}_n
          end{align}



          I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050959%2fon-covariance-and-pseudocovariance-of-a-complex-random-vector%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Okay now that I ponder for a few more hours.



            I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have



            begin{align}
            E[mathbf{s}mathbf{s}^H]
            &=operatorname{diag}(E[s_is_i^*])\
            &=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
            &=operatorname{diag}(E[a^2+b^2])\
            &=operatorname{diag}(E[a^2]+E[b^2])\
            &=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
            && (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
            &=operatorname{diag}(operatorname{Var}[s_i]+0)
            && (because E[a]=E[b]=0,\
            &&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
            &=operatorname{diag}(1)
            && (because operatorname{Var}[s]:=1)\
            &=mathbf{I}_n
            end{align}

            and
            begin{align}
            E[mathbf{s}mathbf{s}^T]
            &=operatorname{diag}(E[s_is_i])\
            &=operatorname{diag}(E[s_i^2])\
            &=operatorname{diag}(E[a^2+2abi-b^2])\
            &=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
            &=operatorname{diag}(E[a^2]-E[b^2])\
            &=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
            &=operatorname{diag}(0)\
            &=mathbf{0}_n
            end{align}



            I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Okay now that I ponder for a few more hours.



              I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have



              begin{align}
              E[mathbf{s}mathbf{s}^H]
              &=operatorname{diag}(E[s_is_i^*])\
              &=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
              &=operatorname{diag}(E[a^2+b^2])\
              &=operatorname{diag}(E[a^2]+E[b^2])\
              &=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
              && (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
              &=operatorname{diag}(operatorname{Var}[s_i]+0)
              && (because E[a]=E[b]=0,\
              &&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
              &=operatorname{diag}(1)
              && (because operatorname{Var}[s]:=1)\
              &=mathbf{I}_n
              end{align}

              and
              begin{align}
              E[mathbf{s}mathbf{s}^T]
              &=operatorname{diag}(E[s_is_i])\
              &=operatorname{diag}(E[s_i^2])\
              &=operatorname{diag}(E[a^2+2abi-b^2])\
              &=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
              &=operatorname{diag}(E[a^2]-E[b^2])\
              &=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
              &=operatorname{diag}(0)\
              &=mathbf{0}_n
              end{align}



              I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Okay now that I ponder for a few more hours.



                I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have



                begin{align}
                E[mathbf{s}mathbf{s}^H]
                &=operatorname{diag}(E[s_is_i^*])\
                &=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
                &=operatorname{diag}(E[a^2+b^2])\
                &=operatorname{diag}(E[a^2]+E[b^2])\
                &=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
                && (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
                &=operatorname{diag}(operatorname{Var}[s_i]+0)
                && (because E[a]=E[b]=0,\
                &&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
                &=operatorname{diag}(1)
                && (because operatorname{Var}[s]:=1)\
                &=mathbf{I}_n
                end{align}

                and
                begin{align}
                E[mathbf{s}mathbf{s}^T]
                &=operatorname{diag}(E[s_is_i])\
                &=operatorname{diag}(E[s_i^2])\
                &=operatorname{diag}(E[a^2+2abi-b^2])\
                &=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
                &=operatorname{diag}(E[a^2]-E[b^2])\
                &=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
                &=operatorname{diag}(0)\
                &=mathbf{0}_n
                end{align}



                I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.






                share|cite|improve this answer









                $endgroup$



                Okay now that I ponder for a few more hours.



                I know for sure that $E[s_is_j^*]=E[s_i]E[s_j]=0$ and $E[s_is_j]=E[s_i]E[s_j]=0$ where $ine j$ so I have



                begin{align}
                E[mathbf{s}mathbf{s}^H]
                &=operatorname{diag}(E[s_is_i^*])\
                &=operatorname{diag}(E[(a+ib)(a-ib)]) &&(because s_i:=a+ib)\
                &=operatorname{diag}(E[a^2+b^2])\
                &=operatorname{diag}(E[a^2]+E[b^2])\
                &=operatorname{diag}(operatorname{Var}[a]+E[a]^2+operatorname{Var}[b]+E[b]^2)
                && (because operatorname{Var}[X]=E[X^2]-E[X]^2)\
                &=operatorname{diag}(operatorname{Var}[s_i]+0)
                && (because E[a]=E[b]=0,\
                &&& qquadoperatorname{Var}[s]:=operatorname{Var}[a]+operatorname{Var}[b])\
                &=operatorname{diag}(1)
                && (because operatorname{Var}[s]:=1)\
                &=mathbf{I}_n
                end{align}

                and
                begin{align}
                E[mathbf{s}mathbf{s}^T]
                &=operatorname{diag}(E[s_is_i])\
                &=operatorname{diag}(E[s_i^2])\
                &=operatorname{diag}(E[a^2+2abi-b^2])\
                &=operatorname{diag}(E[a^2]+2E[abi]-E[b^2])\
                &=operatorname{diag}(E[a^2]-E[b^2])\
                &=operatorname{diag}(operatorname{Var}[a]-operatorname{Var}[b])\
                &=operatorname{diag}(0)\
                &=mathbf{0}_n
                end{align}



                I will just leave my answer here in case someone were to be in my position in the future since I can't find any good reference for this.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 24 '18 at 7:39









                Karn WatcharasupatKarn Watcharasupat

                3,9742526




                3,9742526






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050959%2fon-covariance-and-pseudocovariance-of-a-complex-random-vector%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix