Cancellation law on a commutative and associative binary operation on a set $S$
$begingroup$
I need to Show: Let$*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$.(This z may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and ac=bc, then $a=b$.
contest-math
$endgroup$
add a comment |
$begingroup$
I need to Show: Let$*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$.(This z may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and ac=bc, then $a=b$.
contest-math
$endgroup$
$begingroup$
There's an archive of Putnam problems with solutions: kskedlaya.org/putnam-archive
$endgroup$
– the_fox
Nov 12 '18 at 10:27
add a comment |
$begingroup$
I need to Show: Let$*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$.(This z may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and ac=bc, then $a=b$.
contest-math
$endgroup$
I need to Show: Let$*$ be a commutative and associative binary operation on a set $S$. Assume that for every $x$ and $y$ in $S$, there exists $z$ in $S$ such that $x*z=y$.(This z may depend on $x$ and $y$.) Show that if $a,b,c$ are in $S$ and ac=bc, then $a=b$.
contest-math
contest-math
edited Dec 24 '18 at 7:25
bof
52.4k558121
52.4k558121
asked Nov 12 '18 at 10:15
nafhgoodnafhgood
1,803422
1,803422
$begingroup$
There's an archive of Putnam problems with solutions: kskedlaya.org/putnam-archive
$endgroup$
– the_fox
Nov 12 '18 at 10:27
add a comment |
$begingroup$
There's an archive of Putnam problems with solutions: kskedlaya.org/putnam-archive
$endgroup$
– the_fox
Nov 12 '18 at 10:27
$begingroup$
There's an archive of Putnam problems with solutions: kskedlaya.org/putnam-archive
$endgroup$
– the_fox
Nov 12 '18 at 10:27
$begingroup$
There's an archive of Putnam problems with solutions: kskedlaya.org/putnam-archive
$endgroup$
– the_fox
Nov 12 '18 at 10:27
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose ac=bc. Find $x,y$ so that $acx=a$ and $ay=b$. Then
$$a=acx=bcx=aycx=acxy=ay=b.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995122%2fcancellation-law-on-a-commutative-and-associative-binary-operation-on-a-set-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose ac=bc. Find $x,y$ so that $acx=a$ and $ay=b$. Then
$$a=acx=bcx=aycx=acxy=ay=b.$$
$endgroup$
add a comment |
$begingroup$
Suppose ac=bc. Find $x,y$ so that $acx=a$ and $ay=b$. Then
$$a=acx=bcx=aycx=acxy=ay=b.$$
$endgroup$
add a comment |
$begingroup$
Suppose ac=bc. Find $x,y$ so that $acx=a$ and $ay=b$. Then
$$a=acx=bcx=aycx=acxy=ay=b.$$
$endgroup$
Suppose ac=bc. Find $x,y$ so that $acx=a$ and $ay=b$. Then
$$a=acx=bcx=aycx=acxy=ay=b.$$
answered Nov 12 '18 at 12:33
bofbof
52.4k558121
52.4k558121
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995122%2fcancellation-law-on-a-commutative-and-associative-binary-operation-on-a-set-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There's an archive of Putnam problems with solutions: kskedlaya.org/putnam-archive
$endgroup$
– the_fox
Nov 12 '18 at 10:27