Closed form of $int_0^pi frac{sin(x)}{sqrt{x^3+x+1}} dx$












22












$begingroup$


I'm looking for a closed-form expression for the value of this integral:



$$I=int_0^pi frac{sin(x)}{sqrt{x^3+x+1}} dx$$



The graph of the integrand looks like this:



$hskip 2.4 in$enter image description here



Numerically, the area is $0.875044...$ for which the Inverse Symbolic Calculator doesn't produce anything promising. My CAS finds neither an antiderivative nor a closed form for the definite integral, and my own manipulations haven't really got me anywhere either.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    i also think there is no closed form for this integral, use a numerical method
    $endgroup$
    – Dr. Sonnhard Graubner
    Oct 21 '14 at 6:27






  • 5




    $begingroup$
    This is the mixed algebraic-transcendental case for the Risch algorithm, which I don't think any of the usual CAS's have implemented fully. However, it's probably true that there is no closed-form antiderivative. Yes, the fact that it's a definite integral does give some hope, but I don't immediately see any way to do it using residues etc.
    $endgroup$
    – Robert Israel
    Oct 21 '14 at 6:27










  • $begingroup$
    The real challenge lies within the integral $int sqrt {x^3 + x + 1}$ , if we can find even an approximate closed form of this integral our problem is solved.
    $endgroup$
    – Awe Kumar Jha
    Oct 28 '18 at 5:04


















22












$begingroup$


I'm looking for a closed-form expression for the value of this integral:



$$I=int_0^pi frac{sin(x)}{sqrt{x^3+x+1}} dx$$



The graph of the integrand looks like this:



$hskip 2.4 in$enter image description here



Numerically, the area is $0.875044...$ for which the Inverse Symbolic Calculator doesn't produce anything promising. My CAS finds neither an antiderivative nor a closed form for the definite integral, and my own manipulations haven't really got me anywhere either.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    i also think there is no closed form for this integral, use a numerical method
    $endgroup$
    – Dr. Sonnhard Graubner
    Oct 21 '14 at 6:27






  • 5




    $begingroup$
    This is the mixed algebraic-transcendental case for the Risch algorithm, which I don't think any of the usual CAS's have implemented fully. However, it's probably true that there is no closed-form antiderivative. Yes, the fact that it's a definite integral does give some hope, but I don't immediately see any way to do it using residues etc.
    $endgroup$
    – Robert Israel
    Oct 21 '14 at 6:27










  • $begingroup$
    The real challenge lies within the integral $int sqrt {x^3 + x + 1}$ , if we can find even an approximate closed form of this integral our problem is solved.
    $endgroup$
    – Awe Kumar Jha
    Oct 28 '18 at 5:04
















22












22








22


19



$begingroup$


I'm looking for a closed-form expression for the value of this integral:



$$I=int_0^pi frac{sin(x)}{sqrt{x^3+x+1}} dx$$



The graph of the integrand looks like this:



$hskip 2.4 in$enter image description here



Numerically, the area is $0.875044...$ for which the Inverse Symbolic Calculator doesn't produce anything promising. My CAS finds neither an antiderivative nor a closed form for the definite integral, and my own manipulations haven't really got me anywhere either.










share|cite|improve this question











$endgroup$




I'm looking for a closed-form expression for the value of this integral:



$$I=int_0^pi frac{sin(x)}{sqrt{x^3+x+1}} dx$$



The graph of the integrand looks like this:



$hskip 2.4 in$enter image description here



Numerically, the area is $0.875044...$ for which the Inverse Symbolic Calculator doesn't produce anything promising. My CAS finds neither an antiderivative nor a closed form for the definite integral, and my own manipulations haven't really got me anywhere either.







integration definite-integrals closed-form






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 24 '18 at 5:04









Blue

49k870156




49k870156










asked Oct 21 '14 at 6:15







user139000















  • 3




    $begingroup$
    i also think there is no closed form for this integral, use a numerical method
    $endgroup$
    – Dr. Sonnhard Graubner
    Oct 21 '14 at 6:27






  • 5




    $begingroup$
    This is the mixed algebraic-transcendental case for the Risch algorithm, which I don't think any of the usual CAS's have implemented fully. However, it's probably true that there is no closed-form antiderivative. Yes, the fact that it's a definite integral does give some hope, but I don't immediately see any way to do it using residues etc.
    $endgroup$
    – Robert Israel
    Oct 21 '14 at 6:27










  • $begingroup$
    The real challenge lies within the integral $int sqrt {x^3 + x + 1}$ , if we can find even an approximate closed form of this integral our problem is solved.
    $endgroup$
    – Awe Kumar Jha
    Oct 28 '18 at 5:04
















  • 3




    $begingroup$
    i also think there is no closed form for this integral, use a numerical method
    $endgroup$
    – Dr. Sonnhard Graubner
    Oct 21 '14 at 6:27






  • 5




    $begingroup$
    This is the mixed algebraic-transcendental case for the Risch algorithm, which I don't think any of the usual CAS's have implemented fully. However, it's probably true that there is no closed-form antiderivative. Yes, the fact that it's a definite integral does give some hope, but I don't immediately see any way to do it using residues etc.
    $endgroup$
    – Robert Israel
    Oct 21 '14 at 6:27










  • $begingroup$
    The real challenge lies within the integral $int sqrt {x^3 + x + 1}$ , if we can find even an approximate closed form of this integral our problem is solved.
    $endgroup$
    – Awe Kumar Jha
    Oct 28 '18 at 5:04










3




3




$begingroup$
i also think there is no closed form for this integral, use a numerical method
$endgroup$
– Dr. Sonnhard Graubner
Oct 21 '14 at 6:27




$begingroup$
i also think there is no closed form for this integral, use a numerical method
$endgroup$
– Dr. Sonnhard Graubner
Oct 21 '14 at 6:27




5




5




$begingroup$
This is the mixed algebraic-transcendental case for the Risch algorithm, which I don't think any of the usual CAS's have implemented fully. However, it's probably true that there is no closed-form antiderivative. Yes, the fact that it's a definite integral does give some hope, but I don't immediately see any way to do it using residues etc.
$endgroup$
– Robert Israel
Oct 21 '14 at 6:27




$begingroup$
This is the mixed algebraic-transcendental case for the Risch algorithm, which I don't think any of the usual CAS's have implemented fully. However, it's probably true that there is no closed-form antiderivative. Yes, the fact that it's a definite integral does give some hope, but I don't immediately see any way to do it using residues etc.
$endgroup$
– Robert Israel
Oct 21 '14 at 6:27












$begingroup$
The real challenge lies within the integral $int sqrt {x^3 + x + 1}$ , if we can find even an approximate closed form of this integral our problem is solved.
$endgroup$
– Awe Kumar Jha
Oct 28 '18 at 5:04






$begingroup$
The real challenge lies within the integral $int sqrt {x^3 + x + 1}$ , if we can find even an approximate closed form of this integral our problem is solved.
$endgroup$
– Awe Kumar Jha
Oct 28 '18 at 5:04












1 Answer
1






active

oldest

votes


















4












$begingroup$

A Neater Expression



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = sum_0^∞ A_k sum_0^k (-1)^r {}^kP_{2r} π^{k-2r}$$
Where,
$$(3+2k)A_k + (5+2k)A_{2+k} + 2(3+k)A_{3+k} = 0,$$
$$A_0=1, A_1=frac {-1}{2}, A_2=frac {3}{8}$$



A greedy approach



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = 0.8750439062939084$$
Using the greedy Egyptian fraction algorithm,
$$x_{k+1} = x_k - frac {1}{lceil frac {1}{x_k} rceil}$$
where, $x_0 = I$, I got an expansion,
$$I = frac {1}{2} + frac {1}{3} + frac {1}{2^3.3} +frac {1}{2^3.3.13.73}+frac {1}{2^2.13.113.397547} +……$$
I couldn't go farther , for my limited computational capacity (which is my laptop), however I indeed see one pattern : the prime factors in the denominators $(2,3,13,73,113,…)$ belong to the set of primes given by,
$$a(n)= text {Min} left(x; π[x]-πleft[frac {x}{2}right]=nright)$$
I got it on OEIS(https://oeis.org/A080359). Yet it needs much more insight.



Original answer



A closed form would be extremely difficult to get. This appears to be a new function. Substituting $t$ for the denominator, we get a beautiful form of the integral, however potentially latent in the present context.
$$I = 2int frac {cosh J(t)}{cosh 3J(t)} sin left(-2 sqrt {frac {1}{3}} sinh J(t)right) dt$$
where,
$$J(t):=frac {1}{3} sinh^{-1} left[frac {3sqrt 3}{2} (1-t^2)right]$$
So , I am giving a series form solution. Consider,
$$F(x):=int frac {sin x}{sqrt {1+x(1+x^2)}} dx……(1)$$
Now, for $x<1$,
$$[1+x(1+x^2)]^{-frac {1}{2}} = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}}x^k(1+x^2)^k ……(2)$$
Plugging $(2)$ into $(1)$ we get,
$$F(x) = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} G(k,x) ……(3),$$
where ,
$$G(k,x):= int x^k sin x (1+x^2)^k dx ……(4)$$
But,
$$(1+x^2)^k= sum_{r=0}^k C^k_r x^{2r} ……(5)$$
Plugging $(5)$ into $(4)$ we get,
$$G(k,x) = sum_{r=0}^k C^k_r H(r,k,x) ……(6),$$
where,
$$H(r,k,x) := int x^{k+2r} sin x dx$$
$$= - frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}} …… (7)$$
Hence,
$$F(x)=sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}}……(8)$$
On the same lines an integral exists for the case $x>1$, the only difference being in the binomial expansion for the denominator of the original integral . Call it $F'(x)$. Then,
$$int_0^π frac {sin x}{sqrt {1+x(1+x^2)}} dx = [F(1) -F(0)] +[F'(π) - F'(1)]$$
This solution is in terms of upper incomplete gamma functions with complex arguments. The notation $C^n_r$ stands for combinatorial coefficients.



Note-1



Alternatively, one could use hypergeometric functions to express the final result,
$$F(x)=-sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {x^{k+2r+2}}{k+2r+2} {}_1text {F}_2 left(frac {k+2r+4}{2},frac {3}{2} ; frac {k+2r+2}{2} ; -frac {x^2}{4}right)$$



Note-2



There is still hope for a closed form of the indefinite integral in terms of the Fresnel integral $C(z)$, consider a related integral:
$$int frac {sin x}{sqrt {x^3}} dx = sqrt {8π} text {C} left(sqrt {frac {2x}{π}}right) - frac {2sin x}{sqrt x} + c$$
The integrand is almost the same, except for the extra linear term $x+1$ under square root.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
    $endgroup$
    – Martin Gales
    Dec 25 '18 at 18:36











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f983830%2fclosed-form-of-int-0-pi-frac-sinx-sqrtx3x1-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

A Neater Expression



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = sum_0^∞ A_k sum_0^k (-1)^r {}^kP_{2r} π^{k-2r}$$
Where,
$$(3+2k)A_k + (5+2k)A_{2+k} + 2(3+k)A_{3+k} = 0,$$
$$A_0=1, A_1=frac {-1}{2}, A_2=frac {3}{8}$$



A greedy approach



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = 0.8750439062939084$$
Using the greedy Egyptian fraction algorithm,
$$x_{k+1} = x_k - frac {1}{lceil frac {1}{x_k} rceil}$$
where, $x_0 = I$, I got an expansion,
$$I = frac {1}{2} + frac {1}{3} + frac {1}{2^3.3} +frac {1}{2^3.3.13.73}+frac {1}{2^2.13.113.397547} +……$$
I couldn't go farther , for my limited computational capacity (which is my laptop), however I indeed see one pattern : the prime factors in the denominators $(2,3,13,73,113,…)$ belong to the set of primes given by,
$$a(n)= text {Min} left(x; π[x]-πleft[frac {x}{2}right]=nright)$$
I got it on OEIS(https://oeis.org/A080359). Yet it needs much more insight.



Original answer



A closed form would be extremely difficult to get. This appears to be a new function. Substituting $t$ for the denominator, we get a beautiful form of the integral, however potentially latent in the present context.
$$I = 2int frac {cosh J(t)}{cosh 3J(t)} sin left(-2 sqrt {frac {1}{3}} sinh J(t)right) dt$$
where,
$$J(t):=frac {1}{3} sinh^{-1} left[frac {3sqrt 3}{2} (1-t^2)right]$$
So , I am giving a series form solution. Consider,
$$F(x):=int frac {sin x}{sqrt {1+x(1+x^2)}} dx……(1)$$
Now, for $x<1$,
$$[1+x(1+x^2)]^{-frac {1}{2}} = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}}x^k(1+x^2)^k ……(2)$$
Plugging $(2)$ into $(1)$ we get,
$$F(x) = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} G(k,x) ……(3),$$
where ,
$$G(k,x):= int x^k sin x (1+x^2)^k dx ……(4)$$
But,
$$(1+x^2)^k= sum_{r=0}^k C^k_r x^{2r} ……(5)$$
Plugging $(5)$ into $(4)$ we get,
$$G(k,x) = sum_{r=0}^k C^k_r H(r,k,x) ……(6),$$
where,
$$H(r,k,x) := int x^{k+2r} sin x dx$$
$$= - frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}} …… (7)$$
Hence,
$$F(x)=sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}}……(8)$$
On the same lines an integral exists for the case $x>1$, the only difference being in the binomial expansion for the denominator of the original integral . Call it $F'(x)$. Then,
$$int_0^π frac {sin x}{sqrt {1+x(1+x^2)}} dx = [F(1) -F(0)] +[F'(π) - F'(1)]$$
This solution is in terms of upper incomplete gamma functions with complex arguments. The notation $C^n_r$ stands for combinatorial coefficients.



Note-1



Alternatively, one could use hypergeometric functions to express the final result,
$$F(x)=-sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {x^{k+2r+2}}{k+2r+2} {}_1text {F}_2 left(frac {k+2r+4}{2},frac {3}{2} ; frac {k+2r+2}{2} ; -frac {x^2}{4}right)$$



Note-2



There is still hope for a closed form of the indefinite integral in terms of the Fresnel integral $C(z)$, consider a related integral:
$$int frac {sin x}{sqrt {x^3}} dx = sqrt {8π} text {C} left(sqrt {frac {2x}{π}}right) - frac {2sin x}{sqrt x} + c$$
The integrand is almost the same, except for the extra linear term $x+1$ under square root.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
    $endgroup$
    – Martin Gales
    Dec 25 '18 at 18:36
















4












$begingroup$

A Neater Expression



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = sum_0^∞ A_k sum_0^k (-1)^r {}^kP_{2r} π^{k-2r}$$
Where,
$$(3+2k)A_k + (5+2k)A_{2+k} + 2(3+k)A_{3+k} = 0,$$
$$A_0=1, A_1=frac {-1}{2}, A_2=frac {3}{8}$$



A greedy approach



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = 0.8750439062939084$$
Using the greedy Egyptian fraction algorithm,
$$x_{k+1} = x_k - frac {1}{lceil frac {1}{x_k} rceil}$$
where, $x_0 = I$, I got an expansion,
$$I = frac {1}{2} + frac {1}{3} + frac {1}{2^3.3} +frac {1}{2^3.3.13.73}+frac {1}{2^2.13.113.397547} +……$$
I couldn't go farther , for my limited computational capacity (which is my laptop), however I indeed see one pattern : the prime factors in the denominators $(2,3,13,73,113,…)$ belong to the set of primes given by,
$$a(n)= text {Min} left(x; π[x]-πleft[frac {x}{2}right]=nright)$$
I got it on OEIS(https://oeis.org/A080359). Yet it needs much more insight.



Original answer



A closed form would be extremely difficult to get. This appears to be a new function. Substituting $t$ for the denominator, we get a beautiful form of the integral, however potentially latent in the present context.
$$I = 2int frac {cosh J(t)}{cosh 3J(t)} sin left(-2 sqrt {frac {1}{3}} sinh J(t)right) dt$$
where,
$$J(t):=frac {1}{3} sinh^{-1} left[frac {3sqrt 3}{2} (1-t^2)right]$$
So , I am giving a series form solution. Consider,
$$F(x):=int frac {sin x}{sqrt {1+x(1+x^2)}} dx……(1)$$
Now, for $x<1$,
$$[1+x(1+x^2)]^{-frac {1}{2}} = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}}x^k(1+x^2)^k ……(2)$$
Plugging $(2)$ into $(1)$ we get,
$$F(x) = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} G(k,x) ……(3),$$
where ,
$$G(k,x):= int x^k sin x (1+x^2)^k dx ……(4)$$
But,
$$(1+x^2)^k= sum_{r=0}^k C^k_r x^{2r} ……(5)$$
Plugging $(5)$ into $(4)$ we get,
$$G(k,x) = sum_{r=0}^k C^k_r H(r,k,x) ……(6),$$
where,
$$H(r,k,x) := int x^{k+2r} sin x dx$$
$$= - frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}} …… (7)$$
Hence,
$$F(x)=sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}}……(8)$$
On the same lines an integral exists for the case $x>1$, the only difference being in the binomial expansion for the denominator of the original integral . Call it $F'(x)$. Then,
$$int_0^π frac {sin x}{sqrt {1+x(1+x^2)}} dx = [F(1) -F(0)] +[F'(π) - F'(1)]$$
This solution is in terms of upper incomplete gamma functions with complex arguments. The notation $C^n_r$ stands for combinatorial coefficients.



Note-1



Alternatively, one could use hypergeometric functions to express the final result,
$$F(x)=-sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {x^{k+2r+2}}{k+2r+2} {}_1text {F}_2 left(frac {k+2r+4}{2},frac {3}{2} ; frac {k+2r+2}{2} ; -frac {x^2}{4}right)$$



Note-2



There is still hope for a closed form of the indefinite integral in terms of the Fresnel integral $C(z)$, consider a related integral:
$$int frac {sin x}{sqrt {x^3}} dx = sqrt {8π} text {C} left(sqrt {frac {2x}{π}}right) - frac {2sin x}{sqrt x} + c$$
The integrand is almost the same, except for the extra linear term $x+1$ under square root.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
    $endgroup$
    – Martin Gales
    Dec 25 '18 at 18:36














4












4








4





$begingroup$

A Neater Expression



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = sum_0^∞ A_k sum_0^k (-1)^r {}^kP_{2r} π^{k-2r}$$
Where,
$$(3+2k)A_k + (5+2k)A_{2+k} + 2(3+k)A_{3+k} = 0,$$
$$A_0=1, A_1=frac {-1}{2}, A_2=frac {3}{8}$$



A greedy approach



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = 0.8750439062939084$$
Using the greedy Egyptian fraction algorithm,
$$x_{k+1} = x_k - frac {1}{lceil frac {1}{x_k} rceil}$$
where, $x_0 = I$, I got an expansion,
$$I = frac {1}{2} + frac {1}{3} + frac {1}{2^3.3} +frac {1}{2^3.3.13.73}+frac {1}{2^2.13.113.397547} +……$$
I couldn't go farther , for my limited computational capacity (which is my laptop), however I indeed see one pattern : the prime factors in the denominators $(2,3,13,73,113,…)$ belong to the set of primes given by,
$$a(n)= text {Min} left(x; π[x]-πleft[frac {x}{2}right]=nright)$$
I got it on OEIS(https://oeis.org/A080359). Yet it needs much more insight.



Original answer



A closed form would be extremely difficult to get. This appears to be a new function. Substituting $t$ for the denominator, we get a beautiful form of the integral, however potentially latent in the present context.
$$I = 2int frac {cosh J(t)}{cosh 3J(t)} sin left(-2 sqrt {frac {1}{3}} sinh J(t)right) dt$$
where,
$$J(t):=frac {1}{3} sinh^{-1} left[frac {3sqrt 3}{2} (1-t^2)right]$$
So , I am giving a series form solution. Consider,
$$F(x):=int frac {sin x}{sqrt {1+x(1+x^2)}} dx……(1)$$
Now, for $x<1$,
$$[1+x(1+x^2)]^{-frac {1}{2}} = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}}x^k(1+x^2)^k ……(2)$$
Plugging $(2)$ into $(1)$ we get,
$$F(x) = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} G(k,x) ……(3),$$
where ,
$$G(k,x):= int x^k sin x (1+x^2)^k dx ……(4)$$
But,
$$(1+x^2)^k= sum_{r=0}^k C^k_r x^{2r} ……(5)$$
Plugging $(5)$ into $(4)$ we get,
$$G(k,x) = sum_{r=0}^k C^k_r H(r,k,x) ……(6),$$
where,
$$H(r,k,x) := int x^{k+2r} sin x dx$$
$$= - frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}} …… (7)$$
Hence,
$$F(x)=sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}}……(8)$$
On the same lines an integral exists for the case $x>1$, the only difference being in the binomial expansion for the denominator of the original integral . Call it $F'(x)$. Then,
$$int_0^π frac {sin x}{sqrt {1+x(1+x^2)}} dx = [F(1) -F(0)] +[F'(π) - F'(1)]$$
This solution is in terms of upper incomplete gamma functions with complex arguments. The notation $C^n_r$ stands for combinatorial coefficients.



Note-1



Alternatively, one could use hypergeometric functions to express the final result,
$$F(x)=-sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {x^{k+2r+2}}{k+2r+2} {}_1text {F}_2 left(frac {k+2r+4}{2},frac {3}{2} ; frac {k+2r+2}{2} ; -frac {x^2}{4}right)$$



Note-2



There is still hope for a closed form of the indefinite integral in terms of the Fresnel integral $C(z)$, consider a related integral:
$$int frac {sin x}{sqrt {x^3}} dx = sqrt {8π} text {C} left(sqrt {frac {2x}{π}}right) - frac {2sin x}{sqrt x} + c$$
The integrand is almost the same, except for the extra linear term $x+1$ under square root.






share|cite|improve this answer











$endgroup$



A Neater Expression



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = sum_0^∞ A_k sum_0^k (-1)^r {}^kP_{2r} π^{k-2r}$$
Where,
$$(3+2k)A_k + (5+2k)A_{2+k} + 2(3+k)A_{3+k} = 0,$$
$$A_0=1, A_1=frac {-1}{2}, A_2=frac {3}{8}$$



A greedy approach



$$I=int^π_0 frac {sin x}{sqrt {x^3+x+1}} dx = 0.8750439062939084$$
Using the greedy Egyptian fraction algorithm,
$$x_{k+1} = x_k - frac {1}{lceil frac {1}{x_k} rceil}$$
where, $x_0 = I$, I got an expansion,
$$I = frac {1}{2} + frac {1}{3} + frac {1}{2^3.3} +frac {1}{2^3.3.13.73}+frac {1}{2^2.13.113.397547} +……$$
I couldn't go farther , for my limited computational capacity (which is my laptop), however I indeed see one pattern : the prime factors in the denominators $(2,3,13,73,113,…)$ belong to the set of primes given by,
$$a(n)= text {Min} left(x; π[x]-πleft[frac {x}{2}right]=nright)$$
I got it on OEIS(https://oeis.org/A080359). Yet it needs much more insight.



Original answer



A closed form would be extremely difficult to get. This appears to be a new function. Substituting $t$ for the denominator, we get a beautiful form of the integral, however potentially latent in the present context.
$$I = 2int frac {cosh J(t)}{cosh 3J(t)} sin left(-2 sqrt {frac {1}{3}} sinh J(t)right) dt$$
where,
$$J(t):=frac {1}{3} sinh^{-1} left[frac {3sqrt 3}{2} (1-t^2)right]$$
So , I am giving a series form solution. Consider,
$$F(x):=int frac {sin x}{sqrt {1+x(1+x^2)}} dx……(1)$$
Now, for $x<1$,
$$[1+x(1+x^2)]^{-frac {1}{2}} = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}}x^k(1+x^2)^k ……(2)$$
Plugging $(2)$ into $(1)$ we get,
$$F(x) = -sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} G(k,x) ……(3),$$
where ,
$$G(k,x):= int x^k sin x (1+x^2)^k dx ……(4)$$
But,
$$(1+x^2)^k= sum_{r=0}^k C^k_r x^{2r} ……(5)$$
Plugging $(5)$ into $(4)$ we get,
$$G(k,x) = sum_{r=0}^k C^k_r H(r,k,x) ……(6),$$
where,
$$H(r,k,x) := int x^{k+2r} sin x dx$$
$$= - frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}} …… (7)$$
Hence,
$$F(x)=sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {Gamma (k+2r+1, ix) + (-1)^{k+2r}Gamma (k+2r+1, -ix)}{2(-1)^{frac {5}{2} (k+2r)}}……(8)$$
On the same lines an integral exists for the case $x>1$, the only difference being in the binomial expansion for the denominator of the original integral . Call it $F'(x)$. Then,
$$int_0^π frac {sin x}{sqrt {1+x(1+x^2)}} dx = [F(1) -F(0)] +[F'(π) - F'(1)]$$
This solution is in terms of upper incomplete gamma functions with complex arguments. The notation $C^n_r$ stands for combinatorial coefficients.



Note-1



Alternatively, one could use hypergeometric functions to express the final result,
$$F(x)=-sum_{k=0}^∞ C^{k-frac {1}{2}}_{-frac {1}{2}} sum_{r=0}^k C^k_r frac {x^{k+2r+2}}{k+2r+2} {}_1text {F}_2 left(frac {k+2r+4}{2},frac {3}{2} ; frac {k+2r+2}{2} ; -frac {x^2}{4}right)$$



Note-2



There is still hope for a closed form of the indefinite integral in terms of the Fresnel integral $C(z)$, consider a related integral:
$$int frac {sin x}{sqrt {x^3}} dx = sqrt {8π} text {C} left(sqrt {frac {2x}{π}}right) - frac {2sin x}{sqrt x} + c$$
The integrand is almost the same, except for the extra linear term $x+1$ under square root.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 18 at 10:18

























answered Dec 23 '18 at 17:10









Awe Kumar JhaAwe Kumar Jha

43813




43813












  • $begingroup$
    I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
    $endgroup$
    – Martin Gales
    Dec 25 '18 at 18:36


















  • $begingroup$
    I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
    $endgroup$
    – Martin Gales
    Dec 25 '18 at 18:36
















$begingroup$
I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
$endgroup$
– Martin Gales
Dec 25 '18 at 18:36




$begingroup$
I would say that the integral on the left side of your last equation is a nice closed form expression for the huge formula on the right side.
$endgroup$
– Martin Gales
Dec 25 '18 at 18:36


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f983830%2fclosed-form-of-int-0-pi-frac-sinx-sqrtx3x1-dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Aardman Animations

Are they similar matrix

“minimization” problem in Euclidean space related to orthonormal basis