Two different results with residue calculus for the integral $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}dx$. What...
$begingroup$
So I have to evaluate the following integral :$$int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}dx$$ So I solve as usual with the residue theorem and by using $cos(3x)= Re(e^{3ix})$, $cos(x)=frac{e^{ix}+e^{-ix}}{2}$ and $z=e^{ix}$, but then I have some troubles evaluating the residues. I get as poles 2 and $frac{1}{2}$ where only $frac{1}{2}$ is in our domain (circle of radius 1).
When I calculate the residue using $frac{g(z)}{f'(z)}$, I get $frac{frac{1}{2^3}}{5-2}=frac{1}{24}$ (I put the i outside, that's not the problem here) but when I use $lim_{z to frac{1}{2}} (z-frac{1}{2})frac{z^3}{-(z-2)(z-frac{1}{2})}$, I get $frac{1}{12}$ so that when I multiply by $2 pi $ (again the i is not the problem here), I get $frac{pi}{6}$. WolframAlpha gets $frac{pi}{12}=2pi *frac{1}{24}$ so my second way of finding the residue ($frac{1}{12}$-->$frac{pi}{6}$) seems to be wrong. My question is, what did I do wrong ?
integration complex-analysis residue-calculus
$endgroup$
add a comment |
$begingroup$
So I have to evaluate the following integral :$$int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}dx$$ So I solve as usual with the residue theorem and by using $cos(3x)= Re(e^{3ix})$, $cos(x)=frac{e^{ix}+e^{-ix}}{2}$ and $z=e^{ix}$, but then I have some troubles evaluating the residues. I get as poles 2 and $frac{1}{2}$ where only $frac{1}{2}$ is in our domain (circle of radius 1).
When I calculate the residue using $frac{g(z)}{f'(z)}$, I get $frac{frac{1}{2^3}}{5-2}=frac{1}{24}$ (I put the i outside, that's not the problem here) but when I use $lim_{z to frac{1}{2}} (z-frac{1}{2})frac{z^3}{-(z-2)(z-frac{1}{2})}$, I get $frac{1}{12}$ so that when I multiply by $2 pi $ (again the i is not the problem here), I get $frac{pi}{6}$. WolframAlpha gets $frac{pi}{12}=2pi *frac{1}{24}$ so my second way of finding the residue ($frac{1}{12}$-->$frac{pi}{6}$) seems to be wrong. My question is, what did I do wrong ?
integration complex-analysis residue-calculus
$endgroup$
1
$begingroup$
Please write down the expression you got for $f$. What is $g$ in your answer? If you don't give details of your answer we cannot point out mistakes.
$endgroup$
– Kavi Rama Murthy
Dec 11 '18 at 23:57
$begingroup$
So $f$ is $5z-2z^2-2$ and $g$ is $z^3$ ($=e^{3ix}$ because we let $z=e^{ix}$)
$endgroup$
– Poujh
Dec 12 '18 at 0:01
$begingroup$
@EeveeTrainer Maybe that would work, but it's much simpler if we make the substitutions $cos(x)=frac{e^{ix}+e^{-ix}}{2}$, $cos(3x)=Re(e^{3ix})$ and $z=e^{ix}$ and then find our poles so that we can use the residue theorem in an easier way.
$endgroup$
– Poujh
Dec 12 '18 at 0:09
add a comment |
$begingroup$
So I have to evaluate the following integral :$$int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}dx$$ So I solve as usual with the residue theorem and by using $cos(3x)= Re(e^{3ix})$, $cos(x)=frac{e^{ix}+e^{-ix}}{2}$ and $z=e^{ix}$, but then I have some troubles evaluating the residues. I get as poles 2 and $frac{1}{2}$ where only $frac{1}{2}$ is in our domain (circle of radius 1).
When I calculate the residue using $frac{g(z)}{f'(z)}$, I get $frac{frac{1}{2^3}}{5-2}=frac{1}{24}$ (I put the i outside, that's not the problem here) but when I use $lim_{z to frac{1}{2}} (z-frac{1}{2})frac{z^3}{-(z-2)(z-frac{1}{2})}$, I get $frac{1}{12}$ so that when I multiply by $2 pi $ (again the i is not the problem here), I get $frac{pi}{6}$. WolframAlpha gets $frac{pi}{12}=2pi *frac{1}{24}$ so my second way of finding the residue ($frac{1}{12}$-->$frac{pi}{6}$) seems to be wrong. My question is, what did I do wrong ?
integration complex-analysis residue-calculus
$endgroup$
So I have to evaluate the following integral :$$int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}dx$$ So I solve as usual with the residue theorem and by using $cos(3x)= Re(e^{3ix})$, $cos(x)=frac{e^{ix}+e^{-ix}}{2}$ and $z=e^{ix}$, but then I have some troubles evaluating the residues. I get as poles 2 and $frac{1}{2}$ where only $frac{1}{2}$ is in our domain (circle of radius 1).
When I calculate the residue using $frac{g(z)}{f'(z)}$, I get $frac{frac{1}{2^3}}{5-2}=frac{1}{24}$ (I put the i outside, that's not the problem here) but when I use $lim_{z to frac{1}{2}} (z-frac{1}{2})frac{z^3}{-(z-2)(z-frac{1}{2})}$, I get $frac{1}{12}$ so that when I multiply by $2 pi $ (again the i is not the problem here), I get $frac{pi}{6}$. WolframAlpha gets $frac{pi}{12}=2pi *frac{1}{24}$ so my second way of finding the residue ($frac{1}{12}$-->$frac{pi}{6}$) seems to be wrong. My question is, what did I do wrong ?
integration complex-analysis residue-calculus
integration complex-analysis residue-calculus
edited Jan 7 at 19:30
Poujh
asked Dec 11 '18 at 23:50
PoujhPoujh
609516
609516
1
$begingroup$
Please write down the expression you got for $f$. What is $g$ in your answer? If you don't give details of your answer we cannot point out mistakes.
$endgroup$
– Kavi Rama Murthy
Dec 11 '18 at 23:57
$begingroup$
So $f$ is $5z-2z^2-2$ and $g$ is $z^3$ ($=e^{3ix}$ because we let $z=e^{ix}$)
$endgroup$
– Poujh
Dec 12 '18 at 0:01
$begingroup$
@EeveeTrainer Maybe that would work, but it's much simpler if we make the substitutions $cos(x)=frac{e^{ix}+e^{-ix}}{2}$, $cos(3x)=Re(e^{3ix})$ and $z=e^{ix}$ and then find our poles so that we can use the residue theorem in an easier way.
$endgroup$
– Poujh
Dec 12 '18 at 0:09
add a comment |
1
$begingroup$
Please write down the expression you got for $f$. What is $g$ in your answer? If you don't give details of your answer we cannot point out mistakes.
$endgroup$
– Kavi Rama Murthy
Dec 11 '18 at 23:57
$begingroup$
So $f$ is $5z-2z^2-2$ and $g$ is $z^3$ ($=e^{3ix}$ because we let $z=e^{ix}$)
$endgroup$
– Poujh
Dec 12 '18 at 0:01
$begingroup$
@EeveeTrainer Maybe that would work, but it's much simpler if we make the substitutions $cos(x)=frac{e^{ix}+e^{-ix}}{2}$, $cos(3x)=Re(e^{3ix})$ and $z=e^{ix}$ and then find our poles so that we can use the residue theorem in an easier way.
$endgroup$
– Poujh
Dec 12 '18 at 0:09
1
1
$begingroup$
Please write down the expression you got for $f$. What is $g$ in your answer? If you don't give details of your answer we cannot point out mistakes.
$endgroup$
– Kavi Rama Murthy
Dec 11 '18 at 23:57
$begingroup$
Please write down the expression you got for $f$. What is $g$ in your answer? If you don't give details of your answer we cannot point out mistakes.
$endgroup$
– Kavi Rama Murthy
Dec 11 '18 at 23:57
$begingroup$
So $f$ is $5z-2z^2-2$ and $g$ is $z^3$ ($=e^{3ix}$ because we let $z=e^{ix}$)
$endgroup$
– Poujh
Dec 12 '18 at 0:01
$begingroup$
So $f$ is $5z-2z^2-2$ and $g$ is $z^3$ ($=e^{3ix}$ because we let $z=e^{ix}$)
$endgroup$
– Poujh
Dec 12 '18 at 0:01
$begingroup$
@EeveeTrainer Maybe that would work, but it's much simpler if we make the substitutions $cos(x)=frac{e^{ix}+e^{-ix}}{2}$, $cos(3x)=Re(e^{3ix})$ and $z=e^{ix}$ and then find our poles so that we can use the residue theorem in an easier way.
$endgroup$
– Poujh
Dec 12 '18 at 0:09
$begingroup$
@EeveeTrainer Maybe that would work, but it's much simpler if we make the substitutions $cos(x)=frac{e^{ix}+e^{-ix}}{2}$, $cos(3x)=Re(e^{3ix})$ and $z=e^{ix}$ and then find our poles so that we can use the residue theorem in an easier way.
$endgroup$
– Poujh
Dec 12 '18 at 0:09
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Well, you arrived at: $$I=int_{|z|=1}frac{z^3}{5-4left(frac{z+ z^{-1}}{2}right)}frac{dz}{iz}$$
With some algebra the integral reduces to : $$int_{|z|=1}frac{z^3}{5z-2(z^2+1)}frac{dz}{i}=frac{1}{i}int_{|z|=1}frac{z^3}{-2z^2+5z-2}dz=$$
$$=frac{1}{i}int_{|z|=1}frac{z^3}{-(z-2)(2z-1)}dz=frac{1}{2i}int_{|z|=1}frac{z^3}{-(z-2)(z-tfrac12)}dz$$
Now here you can see that when you factored that denominator you forgot that additional $frac12$ and everything should be fine now.
$endgroup$
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
1
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
1
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
1
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
1
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
|
show 1 more comment
$begingroup$
Starting with a geometric series:
$$frac{1}{2-e^{ix}} = sum_{ngeq 0}frac{1}{2^{n+1}}e^{nix}$$
we may consider the product between this series and its conjugate:
$$begin{eqnarray*}frac{1}{5-4cos x}&=&sum_{m,ngeq 0}frac{1}{2^{m+n+2}}e^{(n-m)ix}\&=&frac{1}{3}+sum_{n>mgeq 0}frac{1}{2^{m+n+1}}cos((n-m)x)\&=&frac{1}{3}+sum_{dgeq 1}cos(dx)sum_{mgeq 0}frac{1}{2^{2m+d+1}}\&=&frac{1}{3}+sum_{dgeq 1}frac{cos(dx)}{2^d}sum_{mgeq 0}frac{1}{2^{2m+1}}\&=&frac{1}{3}+frac{2}{3}sum_{dgeq 1}frac{cos(dx)}{2^d}end{eqnarray*} $$
to get the whole Fourier cosine series of $frac{1}{5-4cos x}$. Then by the orthogonality relations
$$ int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)},dx = frac{2pi}{3}cdotfrac{1}{2^3}=color{red}{frac{pi}{12}}.$$
This approach might look as an overkill, but it is pretty useful in understanding the asymptotic behaviour of the Fourier coefficients of $frac{1}{left(Rpmcosthetaright)^alpha}$ when $alphainfrac{1}{2}+mathbb{N}$.
$endgroup$
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036024%2ftwo-different-results-with-residue-calculus-for-the-integral-int-02-pi-fr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well, you arrived at: $$I=int_{|z|=1}frac{z^3}{5-4left(frac{z+ z^{-1}}{2}right)}frac{dz}{iz}$$
With some algebra the integral reduces to : $$int_{|z|=1}frac{z^3}{5z-2(z^2+1)}frac{dz}{i}=frac{1}{i}int_{|z|=1}frac{z^3}{-2z^2+5z-2}dz=$$
$$=frac{1}{i}int_{|z|=1}frac{z^3}{-(z-2)(2z-1)}dz=frac{1}{2i}int_{|z|=1}frac{z^3}{-(z-2)(z-tfrac12)}dz$$
Now here you can see that when you factored that denominator you forgot that additional $frac12$ and everything should be fine now.
$endgroup$
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
1
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
1
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
1
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
1
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
|
show 1 more comment
$begingroup$
Well, you arrived at: $$I=int_{|z|=1}frac{z^3}{5-4left(frac{z+ z^{-1}}{2}right)}frac{dz}{iz}$$
With some algebra the integral reduces to : $$int_{|z|=1}frac{z^3}{5z-2(z^2+1)}frac{dz}{i}=frac{1}{i}int_{|z|=1}frac{z^3}{-2z^2+5z-2}dz=$$
$$=frac{1}{i}int_{|z|=1}frac{z^3}{-(z-2)(2z-1)}dz=frac{1}{2i}int_{|z|=1}frac{z^3}{-(z-2)(z-tfrac12)}dz$$
Now here you can see that when you factored that denominator you forgot that additional $frac12$ and everything should be fine now.
$endgroup$
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
1
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
1
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
1
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
1
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
|
show 1 more comment
$begingroup$
Well, you arrived at: $$I=int_{|z|=1}frac{z^3}{5-4left(frac{z+ z^{-1}}{2}right)}frac{dz}{iz}$$
With some algebra the integral reduces to : $$int_{|z|=1}frac{z^3}{5z-2(z^2+1)}frac{dz}{i}=frac{1}{i}int_{|z|=1}frac{z^3}{-2z^2+5z-2}dz=$$
$$=frac{1}{i}int_{|z|=1}frac{z^3}{-(z-2)(2z-1)}dz=frac{1}{2i}int_{|z|=1}frac{z^3}{-(z-2)(z-tfrac12)}dz$$
Now here you can see that when you factored that denominator you forgot that additional $frac12$ and everything should be fine now.
$endgroup$
Well, you arrived at: $$I=int_{|z|=1}frac{z^3}{5-4left(frac{z+ z^{-1}}{2}right)}frac{dz}{iz}$$
With some algebra the integral reduces to : $$int_{|z|=1}frac{z^3}{5z-2(z^2+1)}frac{dz}{i}=frac{1}{i}int_{|z|=1}frac{z^3}{-2z^2+5z-2}dz=$$
$$=frac{1}{i}int_{|z|=1}frac{z^3}{-(z-2)(2z-1)}dz=frac{1}{2i}int_{|z|=1}frac{z^3}{-(z-2)(z-tfrac12)}dz$$
Now here you can see that when you factored that denominator you forgot that additional $frac12$ and everything should be fine now.
edited Dec 12 '18 at 0:12
answered Dec 12 '18 at 0:07
ZackyZacky
6,5351858
6,5351858
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
1
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
1
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
1
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
1
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
|
show 1 more comment
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
1
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
1
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
1
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
1
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
$begingroup$
Thanks for your help, but if I use the wollowing way, what am I doing wrong ? $frac{-5 pm sqrt{25-16}}{-4}$ = $frac{5 pm sqrt{25-16}}{4}$ = $frac{1}{2}$ and $2$. In this case, where did the extra factor of 2 go ?
$endgroup$
– Poujh
Dec 12 '18 at 0:17
1
1
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
$begingroup$
If you're curious, I used the exact method (second one) here: math.stackexchange.com/q/2820433/515527
$endgroup$
– Zacky
Dec 12 '18 at 0:17
1
1
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
$begingroup$
I think I understand what you did altough I have not used that formula recently. You found the roots, then used this: For a polynomial $ax^2+bx+c$ if we have two roots it can be rewritten as: $a(x-x_1)(x-x_2)$, right? Well you forgot to multiply by $a$ then.
$endgroup$
– Zacky
Dec 12 '18 at 0:22
1
1
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
$begingroup$
In general I preffer to have the coefficient of $z^2$ to be $1$. Here is an alternative to find the factorization: $$-2z^2+5z-2=-frac{1}{2}((2z)^2-5(2z)+4)$$ Now I denote $(2z)=y$ $$-frac{1}{2}(y^2-5y+4)=-frac12 (y^2-y-4y+4)=-frac12 y(y-1)-4(y-1)=-frac12(y-4)(y-1)$$ Now returing to $z$ we have: $$-frac12(2z-4)(2z-1)=-2(2z-1)(z-frac12)$$
$endgroup$
– Zacky
Dec 12 '18 at 0:40
1
1
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
$begingroup$
Okay, thanks a lot ! I never thought it could be something as "basic" as that haha
$endgroup$
– Poujh
Dec 12 '18 at 0:45
|
show 1 more comment
$begingroup$
Starting with a geometric series:
$$frac{1}{2-e^{ix}} = sum_{ngeq 0}frac{1}{2^{n+1}}e^{nix}$$
we may consider the product between this series and its conjugate:
$$begin{eqnarray*}frac{1}{5-4cos x}&=&sum_{m,ngeq 0}frac{1}{2^{m+n+2}}e^{(n-m)ix}\&=&frac{1}{3}+sum_{n>mgeq 0}frac{1}{2^{m+n+1}}cos((n-m)x)\&=&frac{1}{3}+sum_{dgeq 1}cos(dx)sum_{mgeq 0}frac{1}{2^{2m+d+1}}\&=&frac{1}{3}+sum_{dgeq 1}frac{cos(dx)}{2^d}sum_{mgeq 0}frac{1}{2^{2m+1}}\&=&frac{1}{3}+frac{2}{3}sum_{dgeq 1}frac{cos(dx)}{2^d}end{eqnarray*} $$
to get the whole Fourier cosine series of $frac{1}{5-4cos x}$. Then by the orthogonality relations
$$ int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)},dx = frac{2pi}{3}cdotfrac{1}{2^3}=color{red}{frac{pi}{12}}.$$
This approach might look as an overkill, but it is pretty useful in understanding the asymptotic behaviour of the Fourier coefficients of $frac{1}{left(Rpmcosthetaright)^alpha}$ when $alphainfrac{1}{2}+mathbb{N}$.
$endgroup$
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
add a comment |
$begingroup$
Starting with a geometric series:
$$frac{1}{2-e^{ix}} = sum_{ngeq 0}frac{1}{2^{n+1}}e^{nix}$$
we may consider the product between this series and its conjugate:
$$begin{eqnarray*}frac{1}{5-4cos x}&=&sum_{m,ngeq 0}frac{1}{2^{m+n+2}}e^{(n-m)ix}\&=&frac{1}{3}+sum_{n>mgeq 0}frac{1}{2^{m+n+1}}cos((n-m)x)\&=&frac{1}{3}+sum_{dgeq 1}cos(dx)sum_{mgeq 0}frac{1}{2^{2m+d+1}}\&=&frac{1}{3}+sum_{dgeq 1}frac{cos(dx)}{2^d}sum_{mgeq 0}frac{1}{2^{2m+1}}\&=&frac{1}{3}+frac{2}{3}sum_{dgeq 1}frac{cos(dx)}{2^d}end{eqnarray*} $$
to get the whole Fourier cosine series of $frac{1}{5-4cos x}$. Then by the orthogonality relations
$$ int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)},dx = frac{2pi}{3}cdotfrac{1}{2^3}=color{red}{frac{pi}{12}}.$$
This approach might look as an overkill, but it is pretty useful in understanding the asymptotic behaviour of the Fourier coefficients of $frac{1}{left(Rpmcosthetaright)^alpha}$ when $alphainfrac{1}{2}+mathbb{N}$.
$endgroup$
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
add a comment |
$begingroup$
Starting with a geometric series:
$$frac{1}{2-e^{ix}} = sum_{ngeq 0}frac{1}{2^{n+1}}e^{nix}$$
we may consider the product between this series and its conjugate:
$$begin{eqnarray*}frac{1}{5-4cos x}&=&sum_{m,ngeq 0}frac{1}{2^{m+n+2}}e^{(n-m)ix}\&=&frac{1}{3}+sum_{n>mgeq 0}frac{1}{2^{m+n+1}}cos((n-m)x)\&=&frac{1}{3}+sum_{dgeq 1}cos(dx)sum_{mgeq 0}frac{1}{2^{2m+d+1}}\&=&frac{1}{3}+sum_{dgeq 1}frac{cos(dx)}{2^d}sum_{mgeq 0}frac{1}{2^{2m+1}}\&=&frac{1}{3}+frac{2}{3}sum_{dgeq 1}frac{cos(dx)}{2^d}end{eqnarray*} $$
to get the whole Fourier cosine series of $frac{1}{5-4cos x}$. Then by the orthogonality relations
$$ int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)},dx = frac{2pi}{3}cdotfrac{1}{2^3}=color{red}{frac{pi}{12}}.$$
This approach might look as an overkill, but it is pretty useful in understanding the asymptotic behaviour of the Fourier coefficients of $frac{1}{left(Rpmcosthetaright)^alpha}$ when $alphainfrac{1}{2}+mathbb{N}$.
$endgroup$
Starting with a geometric series:
$$frac{1}{2-e^{ix}} = sum_{ngeq 0}frac{1}{2^{n+1}}e^{nix}$$
we may consider the product between this series and its conjugate:
$$begin{eqnarray*}frac{1}{5-4cos x}&=&sum_{m,ngeq 0}frac{1}{2^{m+n+2}}e^{(n-m)ix}\&=&frac{1}{3}+sum_{n>mgeq 0}frac{1}{2^{m+n+1}}cos((n-m)x)\&=&frac{1}{3}+sum_{dgeq 1}cos(dx)sum_{mgeq 0}frac{1}{2^{2m+d+1}}\&=&frac{1}{3}+sum_{dgeq 1}frac{cos(dx)}{2^d}sum_{mgeq 0}frac{1}{2^{2m+1}}\&=&frac{1}{3}+frac{2}{3}sum_{dgeq 1}frac{cos(dx)}{2^d}end{eqnarray*} $$
to get the whole Fourier cosine series of $frac{1}{5-4cos x}$. Then by the orthogonality relations
$$ int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)},dx = frac{2pi}{3}cdotfrac{1}{2^3}=color{red}{frac{pi}{12}}.$$
This approach might look as an overkill, but it is pretty useful in understanding the asymptotic behaviour of the Fourier coefficients of $frac{1}{left(Rpmcosthetaright)^alpha}$ when $alphainfrac{1}{2}+mathbb{N}$.
edited Dec 12 '18 at 12:49
answered Dec 12 '18 at 2:50
Jack D'AurizioJack D'Aurizio
289k33282662
289k33282662
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
add a comment |
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Thanks, I just have one question. What exactly did you do in the step $int_{0}^{2pi}frac{cos(3x)}{5-4cos(x)}$=$frac{2pi}{3}frac{1}{2^3}$ ?
$endgroup$
– Poujh
Dec 12 '18 at 8:08
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
Ah okay, it's the dot product of $cos(3x)$ and $frac{1}{5-4cos(x)}$ which you wrote as a serie just before and then you use, as said, the orthogonality. And then you integrate and you get $2pi$ times $frac{1}{2}((cos(3x-3x)+cos(3x+3x))$ from the cos(a)cos(b) (where a=b) trig identity, and cos(0) gives 1 while cos(6x) integrated from $0$ to $2pi$ gives $0$. And also, $frac{1}{3}*cos(3x)$ from $0$ to $2pi$ is also $0$. Makes sense, thank you !
$endgroup$
– Poujh
Dec 12 '18 at 8:21
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
It seems like that you hate contour integration a lot, regarding some of your recent answers... :-)
$endgroup$
– Szeto
Dec 12 '18 at 10:30
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
$begingroup$
@Szeto: it is not that I hate it, but many times Fourier series or the Laplace transform allow to avoid the "hunt" for the correct integration contour, since it is somewhat already encoded in their application, and I find this pretty practical.
$endgroup$
– Jack D'Aurizio
Dec 12 '18 at 12:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036024%2ftwo-different-results-with-residue-calculus-for-the-integral-int-02-pi-fr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Please write down the expression you got for $f$. What is $g$ in your answer? If you don't give details of your answer we cannot point out mistakes.
$endgroup$
– Kavi Rama Murthy
Dec 11 '18 at 23:57
$begingroup$
So $f$ is $5z-2z^2-2$ and $g$ is $z^3$ ($=e^{3ix}$ because we let $z=e^{ix}$)
$endgroup$
– Poujh
Dec 12 '18 at 0:01
$begingroup$
@EeveeTrainer Maybe that would work, but it's much simpler if we make the substitutions $cos(x)=frac{e^{ix}+e^{-ix}}{2}$, $cos(3x)=Re(e^{3ix})$ and $z=e^{ix}$ and then find our poles so that we can use the residue theorem in an easier way.
$endgroup$
– Poujh
Dec 12 '18 at 0:09