solutions to $int_{-infty}^infty frac{1}{x^n+1}dx$ for even $n$












6












$begingroup$


I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
    $endgroup$
    – Mason
    Dec 11 '18 at 23:32








  • 1




    $begingroup$
    Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 23:40


















6












$begingroup$


I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
    $endgroup$
    – Mason
    Dec 11 '18 at 23:32








  • 1




    $begingroup$
    Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 23:40
















6












6








6


1



$begingroup$


I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.










share|cite|improve this question











$endgroup$




I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.







integration definite-integrals improper-integrals infinity rational-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 4:30









Batominovski

33k33293




33k33293










asked Dec 11 '18 at 23:28









Suchetan DonthaSuchetan Dontha

14312




14312








  • 1




    $begingroup$
    Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
    $endgroup$
    – Mason
    Dec 11 '18 at 23:32








  • 1




    $begingroup$
    Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 23:40
















  • 1




    $begingroup$
    Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
    $endgroup$
    – Mason
    Dec 11 '18 at 23:32








  • 1




    $begingroup$
    Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
    $endgroup$
    – Jack D'Aurizio
    Dec 11 '18 at 23:40










1




1




$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32






$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32






1




1




$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40






$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40












2 Answers
2






active

oldest

votes


















3












$begingroup$

For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
$$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
$$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
\&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$

Then,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
Via the Residue Theorem,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$



Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
$$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
by setting $x:=t^{frac1n}$. This proves the equality
$$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
$$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$



In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Using Mason's tip in the comments you can say



    $$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$



    And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035999%2fsolutions-to-int-infty-infty-frac1xn1dx-for-even-n%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
      $$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
      where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
      For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
      $$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
      \&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$

      Then,
      $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
      Via the Residue Theorem,
      $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
      Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$



      Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
      $$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
      by setting $x:=t^{frac1n}$. This proves the equality
      $$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
      $$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$



      In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.






      share|cite|improve this answer









      $endgroup$


















        3












        $begingroup$

        For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
        $$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
        where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
        For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
        $$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
        \&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$

        Then,
        $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
        Via the Residue Theorem,
        $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
        Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$



        Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
        $$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
        by setting $x:=t^{frac1n}$. This proves the equality
        $$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
        $$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$



        In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.






        share|cite|improve this answer









        $endgroup$
















          3












          3








          3





          $begingroup$

          For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
          $$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
          where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
          For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
          $$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
          \&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$

          Then,
          $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
          Via the Residue Theorem,
          $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
          Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$



          Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
          $$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
          by setting $x:=t^{frac1n}$. This proves the equality
          $$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
          $$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$



          In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.






          share|cite|improve this answer









          $endgroup$



          For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
          $$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
          where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
          For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
          $$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
          \&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$

          Then,
          $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
          Via the Residue Theorem,
          $$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
          Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$



          Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
          $$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
          by setting $x:=t^{frac1n}$. This proves the equality
          $$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
          $$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$



          In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 4:24









          BatominovskiBatominovski

          33k33293




          33k33293























              2












              $begingroup$

              Using Mason's tip in the comments you can say



              $$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$



              And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Using Mason's tip in the comments you can say



                $$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$



                And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Using Mason's tip in the comments you can say



                  $$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$



                  And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.






                  share|cite|improve this answer









                  $endgroup$



                  Using Mason's tip in the comments you can say



                  $$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$



                  And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 11 '18 at 23:42









                  Dando18Dando18

                  4,67741235




                  4,67741235






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035999%2fsolutions-to-int-infty-infty-frac1xn1dx-for-even-n%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Probability when a professor distributes a quiz and homework assignment to a class of n students.

                      Aardman Animations

                      Are they similar matrix