solutions to $int_{-infty}^infty frac{1}{x^n+1}dx$ for even $n$
$begingroup$
I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.
integration definite-integrals improper-integrals infinity rational-functions
$endgroup$
add a comment |
$begingroup$
I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.
integration definite-integrals improper-integrals infinity rational-functions
$endgroup$
1
$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32
1
$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40
add a comment |
$begingroup$
I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.
integration definite-integrals improper-integrals infinity rational-functions
$endgroup$
I was playing around with glasser's master theorem and integrals of the form $$int_{-infty}^infty frac{1}{x^n+1}dx$$ I observed that for positive, even values of n, the solution to the integral followed the form $$frac{pi}{frac{n}{2}sin(frac{pi}{n})}$$, the obvious example being at n = 2, the integral equals $pi$. I've yet to prove this pattern, but I recognized it after some fiddling around. Is this integral part of some larger concept that is already documented? For example, the way that $int_0^infty frac{x^{p-1}}{e^x-1}dx = zeta(p)Gamma(p), p>1$, I can't help but think about why the general solution for even values has a sine function in it.
integration definite-integrals improper-integrals infinity rational-functions
integration definite-integrals improper-integrals infinity rational-functions
edited Dec 12 '18 at 4:30
Batominovski
33k33293
33k33293
asked Dec 11 '18 at 23:28
Suchetan DonthaSuchetan Dontha
14312
14312
1
$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32
1
$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40
add a comment |
1
$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32
1
$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40
1
1
$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32
$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32
1
1
$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40
$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
$$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
$$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
\&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$
Then,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
Via the Residue Theorem,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$
Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
$$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
by setting $x:=t^{frac1n}$. This proves the equality
$$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
$$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$
In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.
$endgroup$
add a comment |
$begingroup$
Using Mason's tip in the comments you can say
$$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$
And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035999%2fsolutions-to-int-infty-infty-frac1xn1dx-for-even-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
$$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
$$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
\&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$
Then,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
Via the Residue Theorem,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$
Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
$$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
by setting $x:=t^{frac1n}$. This proves the equality
$$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
$$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$
In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.
$endgroup$
add a comment |
$begingroup$
For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
$$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
$$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
\&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$
Then,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
Via the Residue Theorem,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$
Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
$$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
by setting $x:=t^{frac1n}$. This proves the equality
$$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
$$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$
In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.
$endgroup$
add a comment |
$begingroup$
For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
$$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
$$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
\&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$
Then,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
Via the Residue Theorem,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$
Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
$$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
by setting $x:=t^{frac1n}$. This proves the equality
$$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
$$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$
In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.
$endgroup$
For any complex number $alpha$ such that $0<text{Re}(alpha)<1$, let
$$I(alpha):=int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t,,$$
where the branch cut of the map $zmapsto z^{alpha-1}$ is taken to be the positive-real axis.
For a real number $epsilonin(0,1)$, consider the positively oriented keyhole contour $Gamma_epsilon$ given by
$$begin{align}left[epsilon,exp(text{i}epsilon),frac{1}{epsilon},exp(text{i}epsilon)right]&cupleft{frac{1}{epsilon},exp(text{i}t),Big|,tin[epsilon,2pi-epsilon]right}
\&cupleft[frac{1}{epsilon},expbig(text{i}(2pi-epsilon)big),epsilon,expbig(text{i}(2pi-epsilon)big)right]cupBig{epsilon,exp(text{i}t),Big|,tin[2pi-epsilon,epsilon]Big},.end{align}$$
Then,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=I(alpha)-expbig(2pitext{i}(alpha-1)big),I(alpha)=-2text{i},exp(pitext{i}alpha),sin(pialpha),I(alpha),.$$
Via the Residue Theorem,
$$lim_{epsilonto0^+},oint_{Gamma_epsilon},frac{z^{alpha-1}}{z+1},text{d}z=2pitext{i},text{Res}_{z=-1}left(frac{z^{alpha-1}}{z+1}right)=2pitext{i},(-1)^{alpha-1}=-2pitext{i},exp(pitext{i}alpha),.$$
Hence, $$int_0^infty,frac{t^{alpha-1}}{t+1},text{d}t=I(alpha)=frac{pi}{sin(pialpha)},.$$
Now, take $alpha:=dfrac1n$ for some integer $ngeq 2$. Then,
$$frac{pi}{sinleft(frac{pi}{n}right)}=int_0^infty,frac{t^{frac1n-1}}{t+1},text{d}t=int_0^infty,frac{n}{x^n+1},text{d}x,,$$
by setting $x:=t^{frac1n}$. This proves the equality
$$int_0^infty,frac{1}{x^n+1},text{d}x=frac{pi}{n,sinleft(frac{pi}{n}right)},.$$ If $n$ is even, then
$$int_{-infty}^{+infty},frac{1}{x^n+1},text{d}x=2,int_0^infty,frac{1}{x^n+1},text{d}x=frac{2pi}{n,sinleft(frac{pi}{n}right)}=frac{pi}{frac{n}{2},sinleft(frac{pi}{n}right)},.$$
In fact, it can be seen that $I(alpha)=text{B}(alpha,1-alpha)=Gamma(alpha),Gamma(1-alpha)$, where $text{B}$ and $Gamma$ are the usual beta and gamma functions, respectively. Therefore, this gives a proof of the Reflection Formula for complex numbers $alpha$ such that $0<text{Re}(alpha)<1$. Then, using analytic continuation, we prove the Reflection Formula for all $alphainmathbb{C}$.
answered Dec 12 '18 at 4:24
BatominovskiBatominovski
33k33293
33k33293
add a comment |
add a comment |
$begingroup$
Using Mason's tip in the comments you can say
$$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$
And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.
$endgroup$
add a comment |
$begingroup$
Using Mason's tip in the comments you can say
$$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$
And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.
$endgroup$
add a comment |
$begingroup$
Using Mason's tip in the comments you can say
$$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$
And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.
$endgroup$
Using Mason's tip in the comments you can say
$$ int_{-infty}^{infty} frac{1}{x^n+1}dx = 2int_0^infty frac{1}{x^n+1}dx. $$
And now substitute $x^n + 1 mapsto 1/u$, and you should get something in the form of the beta function, which has a known representation in terms of the gamma function.
answered Dec 11 '18 at 23:42
Dando18Dando18
4,67741235
4,67741235
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035999%2fsolutions-to-int-infty-infty-frac1xn1dx-for-even-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Here's the details of proving this+ It's an even functions so $int_{-infty}^infty=2int_0^infty$
$endgroup$
– Mason
Dec 11 '18 at 23:32
1
$begingroup$
Essentially because $B(s,1-s)=Gamma(s)Gamma(1-s)=frac{pi}{color{red}{sin(pi s)}}$.
$endgroup$
– Jack D'Aurizio
Dec 11 '18 at 23:40