$u(x,t) = frac{1}{pi^{N/2}}int u_0(x-2sqrt{t}y)e^{-|y|^2} dy$, then $|u(x,t)|le M(1+4delta...











up vote
1
down vote

favorite













Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$



Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$
then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$
Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly




$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$



So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$



Ok,



$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$



I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.



UPDATE:



the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get



$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$










share|cite|improve this question
























  • Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
    – DaveNine
    Nov 13 at 1:25












  • @DaveNine you're right
    – Lucas Zanella
    Nov 13 at 20:05










  • What you have now looks okay, I think you’re there if you just integrate that thing now.
    – DaveNine
    Nov 13 at 22:36















up vote
1
down vote

favorite













Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$



Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$
then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$
Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly




$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$



So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$



Ok,



$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$



I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.



UPDATE:



the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get



$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$










share|cite|improve this question
























  • Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
    – DaveNine
    Nov 13 at 1:25












  • @DaveNine you're right
    – Lucas Zanella
    Nov 13 at 20:05










  • What you have now looks okay, I think you’re there if you just integrate that thing now.
    – DaveNine
    Nov 13 at 22:36













up vote
1
down vote

favorite









up vote
1
down vote

favorite












Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$



Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$
then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$
Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly




$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$



So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$



Ok,



$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$



I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.



UPDATE:



the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get



$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$










share|cite|improve this question
















Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$



Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$
then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$
Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly




$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$



So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$



Ok,



$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$



I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.



UPDATE:



the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get



$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$







calculus real-analysis integration multivariable-calculus pde






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 13 at 20:22

























asked Nov 13 at 1:15









Lucas Zanella

1,17711329




1,17711329












  • Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
    – DaveNine
    Nov 13 at 1:25












  • @DaveNine you're right
    – Lucas Zanella
    Nov 13 at 20:05










  • What you have now looks okay, I think you’re there if you just integrate that thing now.
    – DaveNine
    Nov 13 at 22:36


















  • Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
    – DaveNine
    Nov 13 at 1:25












  • @DaveNine you're right
    – Lucas Zanella
    Nov 13 at 20:05










  • What you have now looks okay, I think you’re there if you just integrate that thing now.
    – DaveNine
    Nov 13 at 22:36
















Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25






Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25














@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05




@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05












What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36




What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996147%2fux-t-frac1-pin-2-int-u-0x-2-sqrttye-y2-dy-then-ux-t%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996147%2fux-t-frac1-pin-2-int-u-0x-2-sqrttye-y2-dy-then-ux-t%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Probability when a professor distributes a quiz and homework assignment to a class of n students.

Aardman Animations

Are they similar matrix