$u(x,t) = frac{1}{pi^{N/2}}int u_0(x-2sqrt{t}y)e^{-|y|^2} dy$, then $|u(x,t)|le M(1+4delta...
up vote
1
down vote
favorite
Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$
Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$ then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$ Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly
$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$
So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$
Ok,
$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$
I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.
UPDATE:
the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get
$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$
calculus real-analysis integration multivariable-calculus pde
add a comment |
up vote
1
down vote
favorite
Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$
Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$ then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$ Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly
$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$
So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$
Ok,
$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$
I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.
UPDATE:
the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get
$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$
calculus real-analysis integration multivariable-calculus pde
Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25
@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05
What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$
Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$ then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$ Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly
$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$
So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$
Ok,
$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$
I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.
UPDATE:
the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get
$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$
calculus real-analysis integration multivariable-calculus pde
Let $$u(x,t) = frac{1}{pi^{N/2}}int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dy$$
Show that if there are constants $M, delta>0$ such that $$|u_0(x)|le
Me^{-delta|x|^2}, xinmathbb{R}^N$$ then $$|u(x,t)|le M(1+4delta
t)^{-N/2}e^{-delta|x|^2/(1+4delta t)}$$ Conclude that if $u_0$ has
compact support, then $lim_{tto infty} u(x,t) = 0$ uniformly
$$|u(x,t)| = frac{1}{pi^{N/2}}left|int_{mathbb{R}^N}
u_0(x-2sqrt{t}y)e^{-|y|^2} dyright|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}
left|u_0(x-2sqrt{t}y)e^{-|y|^2}right| dy $$
So I need to find a bound for $left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|$ using $|u_0(x)|le
Me^{-delta|x|^2}$
Ok,
$$left|u_0(x-2sqrt{t}y)e^{-|y|^2}right|le Me^{-delta|x|^2}e^{-|y|^2} = Me^{-delta|x|^2-|y|^2}$$
I tried working with $-delta|x|^2-|y|^2$ and using $|a|^2 -|b|^2 le |a-b|^2$ or something like that but it looks like it won't work.
UPDATE:
the right bound is $|u_{0}(x-2sqrt{t}y)| leq M e^{-delta |x-2sqrt{t}y|^2}$ so we get
$$|u(x,t)|le frac{1}{pi^{N/2}}int_{mathbb{R}^N}|u_{0}(x-2sqrt{t}y)e^{-|y|^2}|dy leq frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2} e^{-|y|^2}dy =\ frac{1}{pi^{N/2}}int_{mathbb{R}^N}M e^{-delta |x-2sqrt{t}y|^2 -|y|^2}dy $$
calculus real-analysis integration multivariable-calculus pde
calculus real-analysis integration multivariable-calculus pde
edited Nov 13 at 20:22
asked Nov 13 at 1:15
Lucas Zanella
1,17711329
1,17711329
Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25
@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05
What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36
add a comment |
Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25
@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05
What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36
Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25
Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25
@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05
@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05
What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36
What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996147%2fux-t-frac1-pin-2-int-u-0x-2-sqrttye-y2-dy-then-ux-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Why do you think $$|u_{0}(x-2sqrt{t}y) leq M e^{-delta |x|^2}$$ and not $$|u_{0}(x-2sqrt{t}y| leq M e^{-delta |x-2sqrt{t}y|^2}$$ ?
– DaveNine
Nov 13 at 1:25
@DaveNine you're right
– Lucas Zanella
Nov 13 at 20:05
What you have now looks okay, I think you’re there if you just integrate that thing now.
– DaveNine
Nov 13 at 22:36