Explanation for binomial sums $sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty}...
up vote
1
down vote
favorite
I was looking at some negative binomial coefficient problems and I stumbled upon this explanation
$$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$
I was wondering how the author arrived at the conclusion that
$$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$
combinatorics binomial-coefficients negative-binomial
add a comment |
up vote
1
down vote
favorite
I was looking at some negative binomial coefficient problems and I stumbled upon this explanation
$$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$
I was wondering how the author arrived at the conclusion that
$$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$
combinatorics binomial-coefficients negative-binomial
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I was looking at some negative binomial coefficient problems and I stumbled upon this explanation
$$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$
I was wondering how the author arrived at the conclusion that
$$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$
combinatorics binomial-coefficients negative-binomial
I was looking at some negative binomial coefficient problems and I stumbled upon this explanation
$$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$
I was wondering how the author arrived at the conclusion that
$$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$
combinatorics binomial-coefficients negative-binomial
combinatorics binomial-coefficients negative-binomial
asked Nov 13 at 20:42
Itsnhantransitive
769315
769315
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Index transformation (replace $n$ by $n+1$) gives
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$
Now, on the right hand side, the term for $n=-1$, namely
$$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
is zero due to $binom{-4}{-1} = 0$. Hence
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
= sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Index transformation (replace $n$ by $n+1$) gives
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$
Now, on the right hand side, the term for $n=-1$, namely
$$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
is zero due to $binom{-4}{-1} = 0$. Hence
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
= sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
add a comment |
up vote
1
down vote
accepted
Index transformation (replace $n$ by $n+1$) gives
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$
Now, on the right hand side, the term for $n=-1$, namely
$$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
is zero due to $binom{-4}{-1} = 0$. Hence
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
= sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Index transformation (replace $n$ by $n+1$) gives
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$
Now, on the right hand side, the term for $n=-1$, namely
$$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
is zero due to $binom{-4}{-1} = 0$. Hence
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
= sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$
Index transformation (replace $n$ by $n+1$) gives
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$
Now, on the right hand side, the term for $n=-1$, namely
$$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
is zero due to $binom{-4}{-1} = 0$. Hence
$$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
= sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
= sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$
answered Nov 13 at 20:46
martini
70k45990
70k45990
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
add a comment |
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
ah ok I see! Thank you!
– Itsnhantransitive
Nov 13 at 21:26
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997310%2fexplanation-for-binomial-sums-sum-n-0-infty-binom-4n-1-1n-1-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown