Explanation for binomial sums $sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty}...











up vote
1
down vote

favorite
1












I was looking at some negative binomial coefficient problems and I stumbled upon this explanation



$$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$



I was wondering how the author arrived at the conclusion that



$$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$










share|cite|improve this question


























    up vote
    1
    down vote

    favorite
    1












    I was looking at some negative binomial coefficient problems and I stumbled upon this explanation



    $$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$



    I was wondering how the author arrived at the conclusion that



    $$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      I was looking at some negative binomial coefficient problems and I stumbled upon this explanation



      $$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$



      I was wondering how the author arrived at the conclusion that



      $$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$










      share|cite|improve this question













      I was looking at some negative binomial coefficient problems and I stumbled upon this explanation



      $$sum_{n=0}^{infty} binom{n+2}{3} x^n = sum_{n=0}^{infty} binom{n+2}{n-1} x^n= sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1} $$



      I was wondering how the author arrived at the conclusion that



      $$sum_{n=0}^{infty} binom{n+2}{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n-1} (-1)^{n-1} x^n = sum_{n=0}^{infty} binom{-4}{n} (-1) x^{n+1}$$







      combinatorics binomial-coefficients negative-binomial






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 13 at 20:42









      Itsnhantransitive

      769315




      769315






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Index transformation (replace $n$ by $n+1$) gives
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$

          Now, on the right hand side, the term for $n=-1$, namely
          $$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
          is zero due to $binom{-4}{-1} = 0$. Hence
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
          = sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$






          share|cite|improve this answer





















          • ah ok I see! Thank you!
            – Itsnhantransitive
            Nov 13 at 21:26











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997310%2fexplanation-for-binomial-sums-sum-n-0-infty-binom-4n-1-1n-1-x%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Index transformation (replace $n$ by $n+1$) gives
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$

          Now, on the right hand side, the term for $n=-1$, namely
          $$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
          is zero due to $binom{-4}{-1} = 0$. Hence
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
          = sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$






          share|cite|improve this answer





















          • ah ok I see! Thank you!
            – Itsnhantransitive
            Nov 13 at 21:26















          up vote
          1
          down vote



          accepted










          Index transformation (replace $n$ by $n+1$) gives
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$

          Now, on the right hand side, the term for $n=-1$, namely
          $$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
          is zero due to $binom{-4}{-1} = 0$. Hence
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
          = sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$






          share|cite|improve this answer





















          • ah ok I see! Thank you!
            – Itsnhantransitive
            Nov 13 at 21:26













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Index transformation (replace $n$ by $n+1$) gives
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$

          Now, on the right hand side, the term for $n=-1$, namely
          $$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
          is zero due to $binom{-4}{-1} = 0$. Hence
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
          = sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$






          share|cite|improve this answer












          Index transformation (replace $n$ by $n+1$) gives
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1} $$

          Now, on the right hand side, the term for $n=-1$, namely
          $$ binom{-4}{-1} (-1)^{-1} x^0 = 0 $$
          is zero due to $binom{-4}{-1} = 0$. Hence
          $$ sum_{n=0}^infty binom{-4}{n-1}(-1)^{n-1} x^n
          = sum_{n=-1}^infty binom{-4}{n}(-1)^n x^{n+1}
          = sum_{n=0}^infty binom{-4}{n}(-1)^n x^{n+1} $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 13 at 20:46









          martini

          70k45990




          70k45990












          • ah ok I see! Thank you!
            – Itsnhantransitive
            Nov 13 at 21:26


















          • ah ok I see! Thank you!
            – Itsnhantransitive
            Nov 13 at 21:26
















          ah ok I see! Thank you!
          – Itsnhantransitive
          Nov 13 at 21:26




          ah ok I see! Thank you!
          – Itsnhantransitive
          Nov 13 at 21:26


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997310%2fexplanation-for-binomial-sums-sum-n-0-infty-binom-4n-1-1n-1-x%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix