Limit to compare growth of function
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
add a comment |
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
limits
edited Nov 15 at 9:51
user376343
2,2181716
2,2181716
asked Nov 15 at 5:36
user3767495
1468
1468
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
add a comment |
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
add a comment |
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
add a comment |
up vote
3
down vote
up vote
3
down vote
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
answered Nov 15 at 6:00
Kavi Rama Murthy
40.4k31751
40.4k31751
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
add a comment |
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
Same time, same answer !
– Claude Leibovici
Nov 15 at 6:06
add a comment |
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
up vote
3
down vote
up vote
3
down vote
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
answered Nov 15 at 6:06
Claude Leibovici
116k1156131
116k1156131
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown