Trouble with changing indexing in summation
$begingroup$
I have trouble with the following: $$P(t) = sum_{i=0}^{n-r}c_i^r(tB^{n-r-1}_{i-1}(t)+(1-t)B_i^{n-r-1}(t))$$
$$= sum_{i=0}^{n-r-1}(tc^r_{i+1}+(1-t)c_i^r)B_i^{n-r-1}(t),$$ where $c_i$ are constants, and $B_i^n(t)$ are the Bernstein polynomials.
I am confused on how the to reach the second equality from the first one. It seems like just a matter of changing the indexing (reducing the sum index from (n-r) to n-(r+1), but I can't decipher how exactly.
summation numerical-methods index-notation
$endgroup$
add a comment |
$begingroup$
I have trouble with the following: $$P(t) = sum_{i=0}^{n-r}c_i^r(tB^{n-r-1}_{i-1}(t)+(1-t)B_i^{n-r-1}(t))$$
$$= sum_{i=0}^{n-r-1}(tc^r_{i+1}+(1-t)c_i^r)B_i^{n-r-1}(t),$$ where $c_i$ are constants, and $B_i^n(t)$ are the Bernstein polynomials.
I am confused on how the to reach the second equality from the first one. It seems like just a matter of changing the indexing (reducing the sum index from (n-r) to n-(r+1), but I can't decipher how exactly.
summation numerical-methods index-notation
$endgroup$
add a comment |
$begingroup$
I have trouble with the following: $$P(t) = sum_{i=0}^{n-r}c_i^r(tB^{n-r-1}_{i-1}(t)+(1-t)B_i^{n-r-1}(t))$$
$$= sum_{i=0}^{n-r-1}(tc^r_{i+1}+(1-t)c_i^r)B_i^{n-r-1}(t),$$ where $c_i$ are constants, and $B_i^n(t)$ are the Bernstein polynomials.
I am confused on how the to reach the second equality from the first one. It seems like just a matter of changing the indexing (reducing the sum index from (n-r) to n-(r+1), but I can't decipher how exactly.
summation numerical-methods index-notation
$endgroup$
I have trouble with the following: $$P(t) = sum_{i=0}^{n-r}c_i^r(tB^{n-r-1}_{i-1}(t)+(1-t)B_i^{n-r-1}(t))$$
$$= sum_{i=0}^{n-r-1}(tc^r_{i+1}+(1-t)c_i^r)B_i^{n-r-1}(t),$$ where $c_i$ are constants, and $B_i^n(t)$ are the Bernstein polynomials.
I am confused on how the to reach the second equality from the first one. It seems like just a matter of changing the indexing (reducing the sum index from (n-r) to n-(r+1), but I can't decipher how exactly.
summation numerical-methods index-notation
summation numerical-methods index-notation
asked Dec 11 '18 at 9:06
platypus17platypus17
296
296
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
begin{align*}
sum_{i=0}^{n-r}c_i^r&(tB^{n-r-1}_{i-1}(t) +(1-t)B_i^{n-r-1}(t)) \
&= sum_{i=0}^{n-r}c_i^rtB^{n-r-1}_{i-1}(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= sum_{i=-1}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= c_0^rtB^{n-r-1}_{-1}(t)+sum_{i=0}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r-1}c_i^r(1-t)B_i^{n-r-1}(t)+c_{n-r}^r(1-t)B_{n-r}^{n-r-1}(t)dots.
end{align*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035091%2ftrouble-with-changing-indexing-in-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
begin{align*}
sum_{i=0}^{n-r}c_i^r&(tB^{n-r-1}_{i-1}(t) +(1-t)B_i^{n-r-1}(t)) \
&= sum_{i=0}^{n-r}c_i^rtB^{n-r-1}_{i-1}(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= sum_{i=-1}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= c_0^rtB^{n-r-1}_{-1}(t)+sum_{i=0}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r-1}c_i^r(1-t)B_i^{n-r-1}(t)+c_{n-r}^r(1-t)B_{n-r}^{n-r-1}(t)dots.
end{align*}
$endgroup$
add a comment |
$begingroup$
Hint:
begin{align*}
sum_{i=0}^{n-r}c_i^r&(tB^{n-r-1}_{i-1}(t) +(1-t)B_i^{n-r-1}(t)) \
&= sum_{i=0}^{n-r}c_i^rtB^{n-r-1}_{i-1}(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= sum_{i=-1}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= c_0^rtB^{n-r-1}_{-1}(t)+sum_{i=0}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r-1}c_i^r(1-t)B_i^{n-r-1}(t)+c_{n-r}^r(1-t)B_{n-r}^{n-r-1}(t)dots.
end{align*}
$endgroup$
add a comment |
$begingroup$
Hint:
begin{align*}
sum_{i=0}^{n-r}c_i^r&(tB^{n-r-1}_{i-1}(t) +(1-t)B_i^{n-r-1}(t)) \
&= sum_{i=0}^{n-r}c_i^rtB^{n-r-1}_{i-1}(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= sum_{i=-1}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= c_0^rtB^{n-r-1}_{-1}(t)+sum_{i=0}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r-1}c_i^r(1-t)B_i^{n-r-1}(t)+c_{n-r}^r(1-t)B_{n-r}^{n-r-1}(t)dots.
end{align*}
$endgroup$
Hint:
begin{align*}
sum_{i=0}^{n-r}c_i^r&(tB^{n-r-1}_{i-1}(t) +(1-t)B_i^{n-r-1}(t)) \
&= sum_{i=0}^{n-r}c_i^rtB^{n-r-1}_{i-1}(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= sum_{i=-1}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r}c_i^r(1-t)B_i^{n-r-1}(t) \
&= c_0^rtB^{n-r-1}_{-1}(t)+sum_{i=0}^{n-r-1}c_{i+1}^rtB^{n-r-1}_i(t)+sum_{i=0}^{n-r-1}c_i^r(1-t)B_i^{n-r-1}(t)+c_{n-r}^r(1-t)B_{n-r}^{n-r-1}(t)dots.
end{align*}
answered Dec 11 '18 at 9:28
Greg MartinGreg Martin
35k23262
35k23262
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035091%2ftrouble-with-changing-indexing-in-summation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown