Finding sum to infinity [duplicate]












5












$begingroup$



This question already has an answer here:




  • What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?

    5 answers




I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?










share|cite|improve this question











$endgroup$



marked as duplicate by lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    Jan 19 at 2:43












  • $begingroup$
    If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
    $endgroup$
    – DanielWainfleet
    Jan 19 at 3:33












  • $begingroup$
    See : math.stackexchange.com/questions/1711318/…
    $endgroup$
    – lab bhattacharjee
    Jan 19 at 4:05
















5












$begingroup$



This question already has an answer here:




  • What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?

    5 answers




I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?










share|cite|improve this question











$endgroup$



marked as duplicate by lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    Jan 19 at 2:43












  • $begingroup$
    If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
    $endgroup$
    – DanielWainfleet
    Jan 19 at 3:33












  • $begingroup$
    See : math.stackexchange.com/questions/1711318/…
    $endgroup$
    – lab bhattacharjee
    Jan 19 at 4:05














5












5








5


1



$begingroup$



This question already has an answer here:




  • What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?

    5 answers




I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?

    5 answers




I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?





This question already has an answer here:




  • What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?

    5 answers








calculus sequences-and-series taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 2:53







user601297

















asked Jan 19 at 2:32









user601297user601297

31419




31419




marked as duplicate by lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    Jan 19 at 2:43












  • $begingroup$
    If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
    $endgroup$
    – DanielWainfleet
    Jan 19 at 3:33












  • $begingroup$
    See : math.stackexchange.com/questions/1711318/…
    $endgroup$
    – lab bhattacharjee
    Jan 19 at 4:05


















  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    Jan 19 at 2:43












  • $begingroup$
    If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
    $endgroup$
    – DanielWainfleet
    Jan 19 at 3:33












  • $begingroup$
    See : math.stackexchange.com/questions/1711318/…
    $endgroup$
    – lab bhattacharjee
    Jan 19 at 4:05
















$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43






$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43














$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33






$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33














$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05




$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05










3 Answers
3






active

oldest

votes


















12












$begingroup$

One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}
Can you take it from here?






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    Jan 19 at 2:39












  • $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    Jan 19 at 2:45



















2












$begingroup$

Just to give a slightly different approach,



$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$



The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
    Taking $d/dx$ on both sides,
    $$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
    Multiplying both sides by $x$,
    $$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
    Then taking $d/dx$ on both sides again,
    $$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
    Then plug in $x=1$:
    $$sum_{ngeq1}frac{n^2}{n!}=2e$$





    Edit



    This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
    $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
    Apply $xfrac{d}{dx}$:
    $$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
    Apply $xfrac{d}{dx}$:
    $$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
    The pattern continues:
    $$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$





    A similar thing can be done with integration. Example:



    Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
    Start by recalling that (use geometric series)
    $$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
    Then integrate both sides from $0$ to $x$ to get
    $$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
    integrate both sides from $0$ to $1$ now to produce
    $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Amazing, this is exactly what I was looking for
      $endgroup$
      – user601297
      Jan 19 at 2:51










    • $begingroup$
      @user601297 you are very welcome :)
      $endgroup$
      – clathratus
      Jan 19 at 2:53


















    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    12












    $begingroup$

    One may write
    begin{align}
    sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
    \\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
    \\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
    end{align}
    Can you take it from here?






    share|cite|improve this answer









    $endgroup$









    • 2




      $begingroup$
      Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
      $endgroup$
      – Jimmy Sabater
      Jan 19 at 2:39












    • $begingroup$
      Ok both expressions sum to $e$, i get it, thanks a lot
      $endgroup$
      – user601297
      Jan 19 at 2:45
















    12












    $begingroup$

    One may write
    begin{align}
    sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
    \\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
    \\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
    end{align}
    Can you take it from here?






    share|cite|improve this answer









    $endgroup$









    • 2




      $begingroup$
      Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
      $endgroup$
      – Jimmy Sabater
      Jan 19 at 2:39












    • $begingroup$
      Ok both expressions sum to $e$, i get it, thanks a lot
      $endgroup$
      – user601297
      Jan 19 at 2:45














    12












    12








    12





    $begingroup$

    One may write
    begin{align}
    sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
    \\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
    \\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
    end{align}
    Can you take it from here?






    share|cite|improve this answer









    $endgroup$



    One may write
    begin{align}
    sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
    \\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
    \\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
    end{align}
    Can you take it from here?







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 19 at 2:36









    Olivier OloaOlivier Oloa

    108k17177294




    108k17177294








    • 2




      $begingroup$
      Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
      $endgroup$
      – Jimmy Sabater
      Jan 19 at 2:39












    • $begingroup$
      Ok both expressions sum to $e$, i get it, thanks a lot
      $endgroup$
      – user601297
      Jan 19 at 2:45














    • 2




      $begingroup$
      Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
      $endgroup$
      – Jimmy Sabater
      Jan 19 at 2:39












    • $begingroup$
      Ok both expressions sum to $e$, i get it, thanks a lot
      $endgroup$
      – user601297
      Jan 19 at 2:45








    2




    2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    Jan 19 at 2:39






    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    Jan 19 at 2:39














    $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    Jan 19 at 2:45




    $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    Jan 19 at 2:45











    2












    $begingroup$

    Just to give a slightly different approach,



    $$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$



    The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Just to give a slightly different approach,



      $$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$



      The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Just to give a slightly different approach,



        $$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$



        The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.






        share|cite|improve this answer









        $endgroup$



        Just to give a slightly different approach,



        $$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$



        The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 19 at 3:03









        Barry CipraBarry Cipra

        59.6k653126




        59.6k653126























            2












            $begingroup$

            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Taking $d/dx$ on both sides,
            $$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
            Multiplying both sides by $x$,
            $$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
            Then taking $d/dx$ on both sides again,
            $$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
            Then plug in $x=1$:
            $$sum_{ngeq1}frac{n^2}{n!}=2e$$





            Edit



            This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Apply $xfrac{d}{dx}$:
            $$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
            Apply $xfrac{d}{dx}$:
            $$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
            The pattern continues:
            $$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$





            A similar thing can be done with integration. Example:



            Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
            Start by recalling that (use geometric series)
            $$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
            Then integrate both sides from $0$ to $x$ to get
            $$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
            integrate both sides from $0$ to $1$ now to produce
            $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Amazing, this is exactly what I was looking for
              $endgroup$
              – user601297
              Jan 19 at 2:51










            • $begingroup$
              @user601297 you are very welcome :)
              $endgroup$
              – clathratus
              Jan 19 at 2:53
















            2












            $begingroup$

            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Taking $d/dx$ on both sides,
            $$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
            Multiplying both sides by $x$,
            $$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
            Then taking $d/dx$ on both sides again,
            $$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
            Then plug in $x=1$:
            $$sum_{ngeq1}frac{n^2}{n!}=2e$$





            Edit



            This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Apply $xfrac{d}{dx}$:
            $$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
            Apply $xfrac{d}{dx}$:
            $$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
            The pattern continues:
            $$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$





            A similar thing can be done with integration. Example:



            Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
            Start by recalling that (use geometric series)
            $$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
            Then integrate both sides from $0$ to $x$ to get
            $$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
            integrate both sides from $0$ to $1$ now to produce
            $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Amazing, this is exactly what I was looking for
              $endgroup$
              – user601297
              Jan 19 at 2:51










            • $begingroup$
              @user601297 you are very welcome :)
              $endgroup$
              – clathratus
              Jan 19 at 2:53














            2












            2








            2





            $begingroup$

            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Taking $d/dx$ on both sides,
            $$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
            Multiplying both sides by $x$,
            $$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
            Then taking $d/dx$ on both sides again,
            $$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
            Then plug in $x=1$:
            $$sum_{ngeq1}frac{n^2}{n!}=2e$$





            Edit



            This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Apply $xfrac{d}{dx}$:
            $$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
            Apply $xfrac{d}{dx}$:
            $$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
            The pattern continues:
            $$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$





            A similar thing can be done with integration. Example:



            Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
            Start by recalling that (use geometric series)
            $$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
            Then integrate both sides from $0$ to $x$ to get
            $$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
            integrate both sides from $0$ to $1$ now to produce
            $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$






            share|cite|improve this answer











            $endgroup$



            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Taking $d/dx$ on both sides,
            $$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
            Multiplying both sides by $x$,
            $$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
            Then taking $d/dx$ on both sides again,
            $$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
            Then plug in $x=1$:
            $$sum_{ngeq1}frac{n^2}{n!}=2e$$





            Edit



            This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
            $$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
            Apply $xfrac{d}{dx}$:
            $$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
            Apply $xfrac{d}{dx}$:
            $$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
            The pattern continues:
            $$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$





            A similar thing can be done with integration. Example:



            Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
            Start by recalling that (use geometric series)
            $$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
            Then integrate both sides from $0$ to $x$ to get
            $$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
            integrate both sides from $0$ to $1$ now to produce
            $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 19 at 3:18

























            answered Jan 19 at 2:46









            clathratusclathratus

            4,412336




            4,412336








            • 1




              $begingroup$
              Amazing, this is exactly what I was looking for
              $endgroup$
              – user601297
              Jan 19 at 2:51










            • $begingroup$
              @user601297 you are very welcome :)
              $endgroup$
              – clathratus
              Jan 19 at 2:53














            • 1




              $begingroup$
              Amazing, this is exactly what I was looking for
              $endgroup$
              – user601297
              Jan 19 at 2:51










            • $begingroup$
              @user601297 you are very welcome :)
              $endgroup$
              – clathratus
              Jan 19 at 2:53








            1




            1




            $begingroup$
            Amazing, this is exactly what I was looking for
            $endgroup$
            – user601297
            Jan 19 at 2:51




            $begingroup$
            Amazing, this is exactly what I was looking for
            $endgroup$
            – user601297
            Jan 19 at 2:51












            $begingroup$
            @user601297 you are very welcome :)
            $endgroup$
            – clathratus
            Jan 19 at 2:53




            $begingroup$
            @user601297 you are very welcome :)
            $endgroup$
            – clathratus
            Jan 19 at 2:53



            Popular posts from this blog

            Aardman Animations

            Are they similar matrix

            “minimization” problem in Euclidean space related to orthonormal basis