Finding sum to infinity [duplicate]
$begingroup$
This question already has an answer here:
What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?
5 answers
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
$endgroup$
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?
5 answers
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
$endgroup$
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43
$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33
$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05
add a comment |
$begingroup$
This question already has an answer here:
What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?
5 answers
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
$endgroup$
This question already has an answer here:
What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?
5 answers
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
This question already has an answer here:
What's the value of $sumlimits_{k=1}^{infty}frac{k^2}{k!}$?
5 answers
calculus sequences-and-series taylor-expansion
calculus sequences-and-series taylor-expansion
edited Jan 19 at 2:53
user601297
asked Jan 19 at 2:32
user601297user601297
31419
31419
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by lab bhattacharjee
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 19 at 4:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43
$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33
$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05
add a comment |
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43
$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33
$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43
$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33
$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33
$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05
$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
add a comment |
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
add a comment |
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
answered Jan 19 at 2:36
Olivier OloaOlivier Oloa
108k17177294
108k17177294
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
add a comment |
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
2
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
Jan 19 at 2:39
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
Jan 19 at 2:45
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
answered Jan 19 at 3:03
Barry CipraBarry Cipra
59.6k653126
59.6k653126
add a comment |
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
edited Jan 19 at 3:18
answered Jan 19 at 2:46
clathratusclathratus
4,412336
4,412336
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
add a comment |
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
1
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
Jan 19 at 2:51
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
Jan 19 at 2:53
add a comment |
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
Jan 19 at 2:43
$begingroup$
If $R>0$ and a power series $sum_{j=0}^{infty}a_jx^j$ converges to $f(x)$ for each $xin (-R,R)$ then $f$ is differentiable on $(-R,R)$ and $sum_{j=1}^{infty}ja_jx^{j-1} =f'(x)$ for all $(-R,R).$ Notice also that the previous sentence now applies with $f$ replaced by $f'$. For example, for $|x|<2$ let $f(x) =1/(1-x)=sum_{j=0}^{infty}x^j .$ Then $sum_{j=1}^{infty}jx^{j-1}=f'(x)=1/(1-x)^2,$ and $sum_{j=2}^{infty}j(j-1)x^{j-2}=f''(x)=2/(1-x)^3.$
$endgroup$
– DanielWainfleet
Jan 19 at 3:33
$begingroup$
See : math.stackexchange.com/questions/1711318/…
$endgroup$
– lab bhattacharjee
Jan 19 at 4:05