3
$begingroup$
I have stumbled upon an exercice for second year undegraduate student majoring in economics which I find quite demanding. I have an idea for the solution, but it seems awfully complicated, and I am wondering if there was a simpler way to solve it. This goes as follows: Let $(E, langle, rangle)$ be a euclidean space of dimension $n geq 2$ . 1) For any $x in E$ , show that $||x|| = sqrt{n}$ if and only if there exists $(e_1, dots, e_n)$ an orthonormal basis of $E$ such that $x =e_1+ ldots + e_n$ . 2) For any $(x,y) in E$ , show that $||x|| = sqrt{n}$ , $||y|| = sqrt{frac{n(n+1)(2n+1)}{6}}$ and $langle x,y rangle = frac{n(n+1)}{2}$ if and only if there eixsts $(e_1, ldots, e_n)$ an orthonormal basis of $E$ such that $x = e_1 + ldots + e_n$ and $y = e_1 + 2e_2 + ldots + ne_n$ The first q