Finding the extrema of $f(x,y) = 2x^{4} - 3x^{2}y + y^{2}$
$begingroup$
$$f(x,y) = 2x^{4} - 3x^{2}y + y^{2}$$
I found the stationary points of this function using the equations -
$$frac{partial f}{partial x} = 0 qquad frac{partial f}{partial y} = 0$$
I got $(0,0)$.
Now we calculate $R$, $S$, and $T$ at $(0,0)$ where
$$R = frac{partial^{2} f}{partial x^{2} } qquad
S = frac{partial^{2} f}{partial xpartial y} qquad
T = frac{partial^{2} f}{partial y^{2} }$$
then,
$$RT - S^{2} = 0$$
This does't lead to any result. How to find nature of this stationary point?
I know what local minima, local maxima, and saddle points are, but how to find the nature of $(0,0)$?
calculus
$endgroup$
add a comment |
$begingroup$
$$f(x,y) = 2x^{4} - 3x^{2}y + y^{2}$$
I found the stationary points of this function using the equations -
$$frac{partial f}{partial x} = 0 qquad frac{partial f}{partial y} = 0$$
I got $(0,0)$.
Now we calculate $R$, $S$, and $T$ at $(0,0)$ where
$$R = frac{partial^{2} f}{partial x^{2} } qquad
S = frac{partial^{2} f}{partial xpartial y} qquad
T = frac{partial^{2} f}{partial y^{2} }$$
then,
$$RT - S^{2} = 0$$
This does't lead to any result. How to find nature of this stationary point?
I know what local minima, local maxima, and saddle points are, but how to find the nature of $(0,0)$?
calculus
$endgroup$
$begingroup$
Look at this post math.stackexchange.com/questions/2156583/…
$endgroup$
– Paul
Dec 11 '18 at 8:28
$begingroup$
You should show what you got for all of the derivatives, just in case there was a stray sign error or something.
$endgroup$
– Blue
Dec 11 '18 at 8:45
add a comment |
$begingroup$
$$f(x,y) = 2x^{4} - 3x^{2}y + y^{2}$$
I found the stationary points of this function using the equations -
$$frac{partial f}{partial x} = 0 qquad frac{partial f}{partial y} = 0$$
I got $(0,0)$.
Now we calculate $R$, $S$, and $T$ at $(0,0)$ where
$$R = frac{partial^{2} f}{partial x^{2} } qquad
S = frac{partial^{2} f}{partial xpartial y} qquad
T = frac{partial^{2} f}{partial y^{2} }$$
then,
$$RT - S^{2} = 0$$
This does't lead to any result. How to find nature of this stationary point?
I know what local minima, local maxima, and saddle points are, but how to find the nature of $(0,0)$?
calculus
$endgroup$
$$f(x,y) = 2x^{4} - 3x^{2}y + y^{2}$$
I found the stationary points of this function using the equations -
$$frac{partial f}{partial x} = 0 qquad frac{partial f}{partial y} = 0$$
I got $(0,0)$.
Now we calculate $R$, $S$, and $T$ at $(0,0)$ where
$$R = frac{partial^{2} f}{partial x^{2} } qquad
S = frac{partial^{2} f}{partial xpartial y} qquad
T = frac{partial^{2} f}{partial y^{2} }$$
then,
$$RT - S^{2} = 0$$
This does't lead to any result. How to find nature of this stationary point?
I know what local minima, local maxima, and saddle points are, but how to find the nature of $(0,0)$?
calculus
calculus
edited Dec 11 '18 at 8:44
Blue
48.4k870154
48.4k870154
asked Dec 11 '18 at 7:26
MathsaddictMathsaddict
3539
3539
$begingroup$
Look at this post math.stackexchange.com/questions/2156583/…
$endgroup$
– Paul
Dec 11 '18 at 8:28
$begingroup$
You should show what you got for all of the derivatives, just in case there was a stray sign error or something.
$endgroup$
– Blue
Dec 11 '18 at 8:45
add a comment |
$begingroup$
Look at this post math.stackexchange.com/questions/2156583/…
$endgroup$
– Paul
Dec 11 '18 at 8:28
$begingroup$
You should show what you got for all of the derivatives, just in case there was a stray sign error or something.
$endgroup$
– Blue
Dec 11 '18 at 8:45
$begingroup$
Look at this post math.stackexchange.com/questions/2156583/…
$endgroup$
– Paul
Dec 11 '18 at 8:28
$begingroup$
Look at this post math.stackexchange.com/questions/2156583/…
$endgroup$
– Paul
Dec 11 '18 at 8:28
$begingroup$
You should show what you got for all of the derivatives, just in case there was a stray sign error or something.
$endgroup$
– Blue
Dec 11 '18 at 8:45
$begingroup$
You should show what you got for all of the derivatives, just in case there was a stray sign error or something.
$endgroup$
– Blue
Dec 11 '18 at 8:45
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$f(x,y)=2x^4-3x^2y+y^2=left( y-2 {{x}^{2}}right) , left( y-{{x}^{2}}right)$$
$$fleft( varepsilon ,frac{3 {{epsilon }^{2}}}{2}right) =-frac{{{varepsilon }^{4}}}{4}<0$$
$$fleft( varepsilon ,frac{{{varepsilon }^{2}}}{2}right) =frac{3 {{varepsilon }^{4}}}{4}>0$$
Then $(0,0)$ is saddle point.
$endgroup$
add a comment |
$begingroup$
$f(0,0)=0.$
Along the line $y=0$ is $$f(x,0)=2x^4>0$$ in a neighborhood of $(0,0),$
EDIT
while along $y=frac 32 x^2;$ it is $$f(x,frac 32 x^2)=-frac 14 x^4<0$$ in a neighborhood of $(0,0).$
Therefore is $(0,0)$ a saddle point.
$endgroup$
1
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
add a comment |
$begingroup$
From $f(x,y)=2(x^2-frac34y)^2-frac18y^2$ it's easy to see that $(0,0)$ is a saddle.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035006%2ffinding-the-extrema-of-fx-y-2x4-3x2y-y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$f(x,y)=2x^4-3x^2y+y^2=left( y-2 {{x}^{2}}right) , left( y-{{x}^{2}}right)$$
$$fleft( varepsilon ,frac{3 {{epsilon }^{2}}}{2}right) =-frac{{{varepsilon }^{4}}}{4}<0$$
$$fleft( varepsilon ,frac{{{varepsilon }^{2}}}{2}right) =frac{3 {{varepsilon }^{4}}}{4}>0$$
Then $(0,0)$ is saddle point.
$endgroup$
add a comment |
$begingroup$
$$f(x,y)=2x^4-3x^2y+y^2=left( y-2 {{x}^{2}}right) , left( y-{{x}^{2}}right)$$
$$fleft( varepsilon ,frac{3 {{epsilon }^{2}}}{2}right) =-frac{{{varepsilon }^{4}}}{4}<0$$
$$fleft( varepsilon ,frac{{{varepsilon }^{2}}}{2}right) =frac{3 {{varepsilon }^{4}}}{4}>0$$
Then $(0,0)$ is saddle point.
$endgroup$
add a comment |
$begingroup$
$$f(x,y)=2x^4-3x^2y+y^2=left( y-2 {{x}^{2}}right) , left( y-{{x}^{2}}right)$$
$$fleft( varepsilon ,frac{3 {{epsilon }^{2}}}{2}right) =-frac{{{varepsilon }^{4}}}{4}<0$$
$$fleft( varepsilon ,frac{{{varepsilon }^{2}}}{2}right) =frac{3 {{varepsilon }^{4}}}{4}>0$$
Then $(0,0)$ is saddle point.
$endgroup$
$$f(x,y)=2x^4-3x^2y+y^2=left( y-2 {{x}^{2}}right) , left( y-{{x}^{2}}right)$$
$$fleft( varepsilon ,frac{3 {{epsilon }^{2}}}{2}right) =-frac{{{varepsilon }^{4}}}{4}<0$$
$$fleft( varepsilon ,frac{{{varepsilon }^{2}}}{2}right) =frac{3 {{varepsilon }^{4}}}{4}>0$$
Then $(0,0)$ is saddle point.
edited Dec 11 '18 at 9:17
answered Dec 11 '18 at 8:32
Aleksas DomarkasAleksas Domarkas
1,24916
1,24916
add a comment |
add a comment |
$begingroup$
$f(0,0)=0.$
Along the line $y=0$ is $$f(x,0)=2x^4>0$$ in a neighborhood of $(0,0),$
EDIT
while along $y=frac 32 x^2;$ it is $$f(x,frac 32 x^2)=-frac 14 x^4<0$$ in a neighborhood of $(0,0).$
Therefore is $(0,0)$ a saddle point.
$endgroup$
1
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
add a comment |
$begingroup$
$f(0,0)=0.$
Along the line $y=0$ is $$f(x,0)=2x^4>0$$ in a neighborhood of $(0,0),$
EDIT
while along $y=frac 32 x^2;$ it is $$f(x,frac 32 x^2)=-frac 14 x^4<0$$ in a neighborhood of $(0,0).$
Therefore is $(0,0)$ a saddle point.
$endgroup$
1
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
add a comment |
$begingroup$
$f(0,0)=0.$
Along the line $y=0$ is $$f(x,0)=2x^4>0$$ in a neighborhood of $(0,0),$
EDIT
while along $y=frac 32 x^2;$ it is $$f(x,frac 32 x^2)=-frac 14 x^4<0$$ in a neighborhood of $(0,0).$
Therefore is $(0,0)$ a saddle point.
$endgroup$
$f(0,0)=0.$
Along the line $y=0$ is $$f(x,0)=2x^4>0$$ in a neighborhood of $(0,0),$
EDIT
while along $y=frac 32 x^2;$ it is $$f(x,frac 32 x^2)=-frac 14 x^4<0$$ in a neighborhood of $(0,0).$
Therefore is $(0,0)$ a saddle point.
edited Dec 11 '18 at 11:03
answered Dec 11 '18 at 9:59
user376343user376343
3,7783827
3,7783827
1
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
add a comment |
1
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
1
1
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
$begingroup$
$f(x,x) = 2x^4 - 3x^3 + x^2$. Also $f(x,x)>0$ is $x$ is small
$endgroup$
– Dylan
Dec 11 '18 at 10:18
add a comment |
$begingroup$
From $f(x,y)=2(x^2-frac34y)^2-frac18y^2$ it's easy to see that $(0,0)$ is a saddle.
$endgroup$
add a comment |
$begingroup$
From $f(x,y)=2(x^2-frac34y)^2-frac18y^2$ it's easy to see that $(0,0)$ is a saddle.
$endgroup$
add a comment |
$begingroup$
From $f(x,y)=2(x^2-frac34y)^2-frac18y^2$ it's easy to see that $(0,0)$ is a saddle.
$endgroup$
From $f(x,y)=2(x^2-frac34y)^2-frac18y^2$ it's easy to see that $(0,0)$ is a saddle.
answered Dec 11 '18 at 16:53
Michael HoppeMichael Hoppe
11k31836
11k31836
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035006%2ffinding-the-extrema-of-fx-y-2x4-3x2y-y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Look at this post math.stackexchange.com/questions/2156583/…
$endgroup$
– Paul
Dec 11 '18 at 8:28
$begingroup$
You should show what you got for all of the derivatives, just in case there was a stray sign error or something.
$endgroup$
– Blue
Dec 11 '18 at 8:45