Resolving this summation using the given pmf
up vote
0
down vote
favorite
So I'm trying to derive an expected value (related to Bayesian risk/loss function) and I've derived all except one final part. To finish the final part I need to derive one of the following expected values (either will work)
Define the probability mass function
$$p_N (n) = {n-1 choose x-1} frac{Gamma(a+b)}{Gamma(a) + Gamma(b)}frac{Gamma(a+x)+Gamma(b+n-x)}{Gamma(a+b+n)}$$
for $n =x,x+1,x+2,dots$ and also define the conditional pmf
$$p_N(n|p) = {n-1 choose x-1} p^x (1-p)^{n-x}$$
To complete the final step I need either one of:
$$E_N left[ left(frac{x-1}{N-1} right)^2right]$$
or
$$E_{N} = left[ left(frac{x-1}{N-1} right)^2 bigg| p right]$$
In previous questions, I've derived the necessary expected values by absorbing the terms into the probability functions in order to construct a new distribution function, and then obtaining the expected value by normalizing it so that it sums/integrates to $1$. But for these ones I'm stuck due to the fact it's squared and you're left with a single fraciton that can't be absorbed into the combination.
Does anyone see a way forward?
combinatorics summation expected-value
add a comment |
up vote
0
down vote
favorite
So I'm trying to derive an expected value (related to Bayesian risk/loss function) and I've derived all except one final part. To finish the final part I need to derive one of the following expected values (either will work)
Define the probability mass function
$$p_N (n) = {n-1 choose x-1} frac{Gamma(a+b)}{Gamma(a) + Gamma(b)}frac{Gamma(a+x)+Gamma(b+n-x)}{Gamma(a+b+n)}$$
for $n =x,x+1,x+2,dots$ and also define the conditional pmf
$$p_N(n|p) = {n-1 choose x-1} p^x (1-p)^{n-x}$$
To complete the final step I need either one of:
$$E_N left[ left(frac{x-1}{N-1} right)^2right]$$
or
$$E_{N} = left[ left(frac{x-1}{N-1} right)^2 bigg| p right]$$
In previous questions, I've derived the necessary expected values by absorbing the terms into the probability functions in order to construct a new distribution function, and then obtaining the expected value by normalizing it so that it sums/integrates to $1$. But for these ones I'm stuck due to the fact it's squared and you're left with a single fraciton that can't be absorbed into the combination.
Does anyone see a way forward?
combinatorics summation expected-value
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
So I'm trying to derive an expected value (related to Bayesian risk/loss function) and I've derived all except one final part. To finish the final part I need to derive one of the following expected values (either will work)
Define the probability mass function
$$p_N (n) = {n-1 choose x-1} frac{Gamma(a+b)}{Gamma(a) + Gamma(b)}frac{Gamma(a+x)+Gamma(b+n-x)}{Gamma(a+b+n)}$$
for $n =x,x+1,x+2,dots$ and also define the conditional pmf
$$p_N(n|p) = {n-1 choose x-1} p^x (1-p)^{n-x}$$
To complete the final step I need either one of:
$$E_N left[ left(frac{x-1}{N-1} right)^2right]$$
or
$$E_{N} = left[ left(frac{x-1}{N-1} right)^2 bigg| p right]$$
In previous questions, I've derived the necessary expected values by absorbing the terms into the probability functions in order to construct a new distribution function, and then obtaining the expected value by normalizing it so that it sums/integrates to $1$. But for these ones I'm stuck due to the fact it's squared and you're left with a single fraciton that can't be absorbed into the combination.
Does anyone see a way forward?
combinatorics summation expected-value
So I'm trying to derive an expected value (related to Bayesian risk/loss function) and I've derived all except one final part. To finish the final part I need to derive one of the following expected values (either will work)
Define the probability mass function
$$p_N (n) = {n-1 choose x-1} frac{Gamma(a+b)}{Gamma(a) + Gamma(b)}frac{Gamma(a+x)+Gamma(b+n-x)}{Gamma(a+b+n)}$$
for $n =x,x+1,x+2,dots$ and also define the conditional pmf
$$p_N(n|p) = {n-1 choose x-1} p^x (1-p)^{n-x}$$
To complete the final step I need either one of:
$$E_N left[ left(frac{x-1}{N-1} right)^2right]$$
or
$$E_{N} = left[ left(frac{x-1}{N-1} right)^2 bigg| p right]$$
In previous questions, I've derived the necessary expected values by absorbing the terms into the probability functions in order to construct a new distribution function, and then obtaining the expected value by normalizing it so that it sums/integrates to $1$. But for these ones I'm stuck due to the fact it's squared and you're left with a single fraciton that can't be absorbed into the combination.
Does anyone see a way forward?
combinatorics summation expected-value
combinatorics summation expected-value
asked Nov 14 at 7:40
Xiaomi
911114
911114
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Hint using generating functions :
begin{align*}
sum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^n&=qsum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^{n-1}\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{(n-1)} q^{n-2} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} frac{1}{(n-1)} q^{n-1} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} int q^{n-2} dq dq\
&=qint frac{1}{q} int left[sum_{n=x}^infty {n-1choose x-1} q^{n-2}right] dq dq\
&=qint frac{1}{q} int (1-q)^{-x} q^{x-2} dq dq\
end{align*}
The combinatorics identity I use can be proved using the following argument :
begin{align*}
S(x,q)&=sum_{n=x}^infty {n-1choose x-1} q^n\
&= sum_{n=x}^infty left [ {nchoose x} - {n-1 choose x}right] q^n\
&=sum_{n=x}^infty {nchoose x}q^n - sum_{n=x}^infty{n-1 choose x} q^n\
&= frac{1}{q}sum_{n=x+1}^infty {n-1choose x}q^n - sum_{n=x+1}^infty {n-1 choose x} q^n\
&= left( frac{1}{q} - 1 right) S(x+1, q)
end{align*}
Which means that $S(x,q) = left( frac{q}{1-q} right)^{x-1} S(1,q)=left( frac{q}{1-q} right)^{x-1} sum_{n=1}^infty {n-1choose 0} q^n=left( frac{q}{1-q} right)^x$
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Hint using generating functions :
begin{align*}
sum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^n&=qsum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^{n-1}\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{(n-1)} q^{n-2} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} frac{1}{(n-1)} q^{n-1} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} int q^{n-2} dq dq\
&=qint frac{1}{q} int left[sum_{n=x}^infty {n-1choose x-1} q^{n-2}right] dq dq\
&=qint frac{1}{q} int (1-q)^{-x} q^{x-2} dq dq\
end{align*}
The combinatorics identity I use can be proved using the following argument :
begin{align*}
S(x,q)&=sum_{n=x}^infty {n-1choose x-1} q^n\
&= sum_{n=x}^infty left [ {nchoose x} - {n-1 choose x}right] q^n\
&=sum_{n=x}^infty {nchoose x}q^n - sum_{n=x}^infty{n-1 choose x} q^n\
&= frac{1}{q}sum_{n=x+1}^infty {n-1choose x}q^n - sum_{n=x+1}^infty {n-1 choose x} q^n\
&= left( frac{1}{q} - 1 right) S(x+1, q)
end{align*}
Which means that $S(x,q) = left( frac{q}{1-q} right)^{x-1} S(1,q)=left( frac{q}{1-q} right)^{x-1} sum_{n=1}^infty {n-1choose 0} q^n=left( frac{q}{1-q} right)^x$
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
add a comment |
up vote
1
down vote
accepted
Hint using generating functions :
begin{align*}
sum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^n&=qsum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^{n-1}\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{(n-1)} q^{n-2} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} frac{1}{(n-1)} q^{n-1} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} int q^{n-2} dq dq\
&=qint frac{1}{q} int left[sum_{n=x}^infty {n-1choose x-1} q^{n-2}right] dq dq\
&=qint frac{1}{q} int (1-q)^{-x} q^{x-2} dq dq\
end{align*}
The combinatorics identity I use can be proved using the following argument :
begin{align*}
S(x,q)&=sum_{n=x}^infty {n-1choose x-1} q^n\
&= sum_{n=x}^infty left [ {nchoose x} - {n-1 choose x}right] q^n\
&=sum_{n=x}^infty {nchoose x}q^n - sum_{n=x}^infty{n-1 choose x} q^n\
&= frac{1}{q}sum_{n=x+1}^infty {n-1choose x}q^n - sum_{n=x+1}^infty {n-1 choose x} q^n\
&= left( frac{1}{q} - 1 right) S(x+1, q)
end{align*}
Which means that $S(x,q) = left( frac{q}{1-q} right)^{x-1} S(1,q)=left( frac{q}{1-q} right)^{x-1} sum_{n=1}^infty {n-1choose 0} q^n=left( frac{q}{1-q} right)^x$
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Hint using generating functions :
begin{align*}
sum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^n&=qsum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^{n-1}\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{(n-1)} q^{n-2} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} frac{1}{(n-1)} q^{n-1} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} int q^{n-2} dq dq\
&=qint frac{1}{q} int left[sum_{n=x}^infty {n-1choose x-1} q^{n-2}right] dq dq\
&=qint frac{1}{q} int (1-q)^{-x} q^{x-2} dq dq\
end{align*}
The combinatorics identity I use can be proved using the following argument :
begin{align*}
S(x,q)&=sum_{n=x}^infty {n-1choose x-1} q^n\
&= sum_{n=x}^infty left [ {nchoose x} - {n-1 choose x}right] q^n\
&=sum_{n=x}^infty {nchoose x}q^n - sum_{n=x}^infty{n-1 choose x} q^n\
&= frac{1}{q}sum_{n=x+1}^infty {n-1choose x}q^n - sum_{n=x+1}^infty {n-1 choose x} q^n\
&= left( frac{1}{q} - 1 right) S(x+1, q)
end{align*}
Which means that $S(x,q) = left( frac{q}{1-q} right)^{x-1} S(1,q)=left( frac{q}{1-q} right)^{x-1} sum_{n=1}^infty {n-1choose 0} q^n=left( frac{q}{1-q} right)^x$
Hint using generating functions :
begin{align*}
sum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^n&=qsum_{n=x}^infty {n-1choose x-1} frac{1}{(n-1)^2} q^{n-1}\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{(n-1)} q^{n-2} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} frac{1}{(n-1)} q^{n-1} dq\
&=qsum_{n=x}^infty {n-1choose x-1} int frac{1}{q} int q^{n-2} dq dq\
&=qint frac{1}{q} int left[sum_{n=x}^infty {n-1choose x-1} q^{n-2}right] dq dq\
&=qint frac{1}{q} int (1-q)^{-x} q^{x-2} dq dq\
end{align*}
The combinatorics identity I use can be proved using the following argument :
begin{align*}
S(x,q)&=sum_{n=x}^infty {n-1choose x-1} q^n\
&= sum_{n=x}^infty left [ {nchoose x} - {n-1 choose x}right] q^n\
&=sum_{n=x}^infty {nchoose x}q^n - sum_{n=x}^infty{n-1 choose x} q^n\
&= frac{1}{q}sum_{n=x+1}^infty {n-1choose x}q^n - sum_{n=x+1}^infty {n-1 choose x} q^n\
&= left( frac{1}{q} - 1 right) S(x+1, q)
end{align*}
Which means that $S(x,q) = left( frac{q}{1-q} right)^{x-1} S(1,q)=left( frac{q}{1-q} right)^{x-1} sum_{n=1}^infty {n-1choose 0} q^n=left( frac{q}{1-q} right)^x$
edited Nov 14 at 8:42
answered Nov 14 at 8:02
P. Quinton
1,261213
1,261213
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
add a comment |
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
Thanks Quinton, I've never encountered this method before :)
– Xiaomi
Nov 15 at 0:51
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997930%2fresolving-this-summation-using-the-given-pmf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown