Is there a simple way to calculate $sin frac{3pi}{10}-sin frac{pi}{10}$? [duplicate]











up vote
0
down vote

favorite













This question already has an answer here:




  • Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$ [duplicate]

    2 answers




I know how to find the exact value of $sin frac{pi}{10}$ using double and triple angle formulas and the fact that $frac{5pi}{10}=frac{pi}{2}$ but it maybe too complicated for high school students. Is there an easier way that I do not see? The answer is $0.5$.



Unfortunately I did not see a clear answer among posted answers to my question but thanks to @labbhattacharjee, the main idea is to multiply and divide by $2 cos 18°$.
Thus $large{sin 54°-sin 18°=frac{2 sin 54°cos 18°-2 sin 18°cos 18°}{2 cos 18°}=frac{sin 72° + sin 36°-sin 36°}{2 cos 18°}=frac{sin 72°}{2cos 18°}=0.5}$










share|cite|improve this question















marked as duplicate by lab bhattacharjee trigonometry
Users with the  trigonometry badge can single-handedly close trigonometry questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 14 at 8:19


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.



















    up vote
    0
    down vote

    favorite













    This question already has an answer here:




    • Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$ [duplicate]

      2 answers




    I know how to find the exact value of $sin frac{pi}{10}$ using double and triple angle formulas and the fact that $frac{5pi}{10}=frac{pi}{2}$ but it maybe too complicated for high school students. Is there an easier way that I do not see? The answer is $0.5$.



    Unfortunately I did not see a clear answer among posted answers to my question but thanks to @labbhattacharjee, the main idea is to multiply and divide by $2 cos 18°$.
    Thus $large{sin 54°-sin 18°=frac{2 sin 54°cos 18°-2 sin 18°cos 18°}{2 cos 18°}=frac{sin 72° + sin 36°-sin 36°}{2 cos 18°}=frac{sin 72°}{2cos 18°}=0.5}$










    share|cite|improve this question















    marked as duplicate by lab bhattacharjee trigonometry
    Users with the  trigonometry badge can single-handedly close trigonometry questions as duplicates and reopen them as needed.

    StackExchange.ready(function() {
    if (StackExchange.options.isMobile) return;

    $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
    var $hover = $(this).addClass('hover-bound'),
    $msg = $hover.siblings('.dupe-hammer-message');

    $hover.hover(
    function() {
    $hover.showInfoMessage('', {
    messageElement: $msg.clone().show(),
    transient: false,
    position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
    dismissable: false,
    relativeToBody: true
    });
    },
    function() {
    StackExchange.helpers.removeMessages();
    }
    );
    });
    });
    Nov 14 at 8:19


    This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite












      This question already has an answer here:




      • Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$ [duplicate]

        2 answers




      I know how to find the exact value of $sin frac{pi}{10}$ using double and triple angle formulas and the fact that $frac{5pi}{10}=frac{pi}{2}$ but it maybe too complicated for high school students. Is there an easier way that I do not see? The answer is $0.5$.



      Unfortunately I did not see a clear answer among posted answers to my question but thanks to @labbhattacharjee, the main idea is to multiply and divide by $2 cos 18°$.
      Thus $large{sin 54°-sin 18°=frac{2 sin 54°cos 18°-2 sin 18°cos 18°}{2 cos 18°}=frac{sin 72° + sin 36°-sin 36°}{2 cos 18°}=frac{sin 72°}{2cos 18°}=0.5}$










      share|cite|improve this question
















      This question already has an answer here:




      • Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$ [duplicate]

        2 answers




      I know how to find the exact value of $sin frac{pi}{10}$ using double and triple angle formulas and the fact that $frac{5pi}{10}=frac{pi}{2}$ but it maybe too complicated for high school students. Is there an easier way that I do not see? The answer is $0.5$.



      Unfortunately I did not see a clear answer among posted answers to my question but thanks to @labbhattacharjee, the main idea is to multiply and divide by $2 cos 18°$.
      Thus $large{sin 54°-sin 18°=frac{2 sin 54°cos 18°-2 sin 18°cos 18°}{2 cos 18°}=frac{sin 72° + sin 36°-sin 36°}{2 cos 18°}=frac{sin 72°}{2cos 18°}=0.5}$





      This question already has an answer here:




      • Proving trigonometric equation $cos(36^circ) - cos(72^circ) = 1/2$ [duplicate]

        2 answers








      trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 14 at 14:34

























      asked Nov 14 at 5:13









      Vasya

      3,2391515




      3,2391515




      marked as duplicate by lab bhattacharjee trigonometry
      Users with the  trigonometry badge can single-handedly close trigonometry questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Nov 14 at 8:19


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






      marked as duplicate by lab bhattacharjee trigonometry
      Users with the  trigonometry badge can single-handedly close trigonometry questions as duplicates and reopen them as needed.

      StackExchange.ready(function() {
      if (StackExchange.options.isMobile) return;

      $('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
      var $hover = $(this).addClass('hover-bound'),
      $msg = $hover.siblings('.dupe-hammer-message');

      $hover.hover(
      function() {
      $hover.showInfoMessage('', {
      messageElement: $msg.clone().show(),
      transient: false,
      position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
      dismissable: false,
      relativeToBody: true
      });
      },
      function() {
      StackExchange.helpers.removeMessages();
      }
      );
      });
      });
      Nov 14 at 8:19


      This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
























          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote













          Observe
          begin{align}
          sin x-sin y=2sinleft(frac{x-y}{2}right)cosleft(frac{x+y}{2}right)
          end{align}

          then it follows
          begin{align}
          sin frac{3pi}{10}-sinfrac{pi}{10} = 2sinfrac{pi}{10}cosfrac{2pi}{10} = 2sinfrac{pi}{10}left(cos^2frac{pi}{10}-sin^2frac{pi}{10} right).
          end{align}






          share|cite|improve this answer




























            up vote
            0
            down vote













            begin{align}
            sin frac{3pi}{10}&=cos(frac{pi}{2} - frac{3pi}{10})\
            &Rightarrow cos(frac{pi}{2} - frac{3pi}{10})-sinfrac{pi}{10} \
            &=cosfrac{pi}{5} -sinfrac{pi}{10}
            end{align}






            share|cite|improve this answer




























              up vote
              0
              down vote













              That is
              $$cosfrac{pi}{5}-cosfrac{2pi}5=-cosfrac{4pi}{5}-cosfrac{2pi}5=A$$
              say.
              Then
              $$Asinfrac{pi}5=-sinfrac{pi}5left(cosfrac{4pi}{5}+cosfrac{2pi}5right)=-frac12left(sinfrac{5pi}5-sinfrac{3pi}5+sinfrac{3pi}5-
              sinfrac{pi}5right)=frac12sinfracpi5$$

              etc.






              share|cite|improve this answer




























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                2
                down vote













                Observe
                begin{align}
                sin x-sin y=2sinleft(frac{x-y}{2}right)cosleft(frac{x+y}{2}right)
                end{align}

                then it follows
                begin{align}
                sin frac{3pi}{10}-sinfrac{pi}{10} = 2sinfrac{pi}{10}cosfrac{2pi}{10} = 2sinfrac{pi}{10}left(cos^2frac{pi}{10}-sin^2frac{pi}{10} right).
                end{align}






                share|cite|improve this answer

























                  up vote
                  2
                  down vote













                  Observe
                  begin{align}
                  sin x-sin y=2sinleft(frac{x-y}{2}right)cosleft(frac{x+y}{2}right)
                  end{align}

                  then it follows
                  begin{align}
                  sin frac{3pi}{10}-sinfrac{pi}{10} = 2sinfrac{pi}{10}cosfrac{2pi}{10} = 2sinfrac{pi}{10}left(cos^2frac{pi}{10}-sin^2frac{pi}{10} right).
                  end{align}






                  share|cite|improve this answer























                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Observe
                    begin{align}
                    sin x-sin y=2sinleft(frac{x-y}{2}right)cosleft(frac{x+y}{2}right)
                    end{align}

                    then it follows
                    begin{align}
                    sin frac{3pi}{10}-sinfrac{pi}{10} = 2sinfrac{pi}{10}cosfrac{2pi}{10} = 2sinfrac{pi}{10}left(cos^2frac{pi}{10}-sin^2frac{pi}{10} right).
                    end{align}






                    share|cite|improve this answer












                    Observe
                    begin{align}
                    sin x-sin y=2sinleft(frac{x-y}{2}right)cosleft(frac{x+y}{2}right)
                    end{align}

                    then it follows
                    begin{align}
                    sin frac{3pi}{10}-sinfrac{pi}{10} = 2sinfrac{pi}{10}cosfrac{2pi}{10} = 2sinfrac{pi}{10}left(cos^2frac{pi}{10}-sin^2frac{pi}{10} right).
                    end{align}







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 14 at 5:20









                    Jacky Chong

                    17.1k21027




                    17.1k21027






















                        up vote
                        0
                        down vote













                        begin{align}
                        sin frac{3pi}{10}&=cos(frac{pi}{2} - frac{3pi}{10})\
                        &Rightarrow cos(frac{pi}{2} - frac{3pi}{10})-sinfrac{pi}{10} \
                        &=cosfrac{pi}{5} -sinfrac{pi}{10}
                        end{align}






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          begin{align}
                          sin frac{3pi}{10}&=cos(frac{pi}{2} - frac{3pi}{10})\
                          &Rightarrow cos(frac{pi}{2} - frac{3pi}{10})-sinfrac{pi}{10} \
                          &=cosfrac{pi}{5} -sinfrac{pi}{10}
                          end{align}






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            begin{align}
                            sin frac{3pi}{10}&=cos(frac{pi}{2} - frac{3pi}{10})\
                            &Rightarrow cos(frac{pi}{2} - frac{3pi}{10})-sinfrac{pi}{10} \
                            &=cosfrac{pi}{5} -sinfrac{pi}{10}
                            end{align}






                            share|cite|improve this answer












                            begin{align}
                            sin frac{3pi}{10}&=cos(frac{pi}{2} - frac{3pi}{10})\
                            &Rightarrow cos(frac{pi}{2} - frac{3pi}{10})-sinfrac{pi}{10} \
                            &=cosfrac{pi}{5} -sinfrac{pi}{10}
                            end{align}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 14 at 5:33









                            1ENİGMA1

                            940316




                            940316






















                                up vote
                                0
                                down vote













                                That is
                                $$cosfrac{pi}{5}-cosfrac{2pi}5=-cosfrac{4pi}{5}-cosfrac{2pi}5=A$$
                                say.
                                Then
                                $$Asinfrac{pi}5=-sinfrac{pi}5left(cosfrac{4pi}{5}+cosfrac{2pi}5right)=-frac12left(sinfrac{5pi}5-sinfrac{3pi}5+sinfrac{3pi}5-
                                sinfrac{pi}5right)=frac12sinfracpi5$$

                                etc.






                                share|cite|improve this answer

























                                  up vote
                                  0
                                  down vote













                                  That is
                                  $$cosfrac{pi}{5}-cosfrac{2pi}5=-cosfrac{4pi}{5}-cosfrac{2pi}5=A$$
                                  say.
                                  Then
                                  $$Asinfrac{pi}5=-sinfrac{pi}5left(cosfrac{4pi}{5}+cosfrac{2pi}5right)=-frac12left(sinfrac{5pi}5-sinfrac{3pi}5+sinfrac{3pi}5-
                                  sinfrac{pi}5right)=frac12sinfracpi5$$

                                  etc.






                                  share|cite|improve this answer























                                    up vote
                                    0
                                    down vote










                                    up vote
                                    0
                                    down vote









                                    That is
                                    $$cosfrac{pi}{5}-cosfrac{2pi}5=-cosfrac{4pi}{5}-cosfrac{2pi}5=A$$
                                    say.
                                    Then
                                    $$Asinfrac{pi}5=-sinfrac{pi}5left(cosfrac{4pi}{5}+cosfrac{2pi}5right)=-frac12left(sinfrac{5pi}5-sinfrac{3pi}5+sinfrac{3pi}5-
                                    sinfrac{pi}5right)=frac12sinfracpi5$$

                                    etc.






                                    share|cite|improve this answer












                                    That is
                                    $$cosfrac{pi}{5}-cosfrac{2pi}5=-cosfrac{4pi}{5}-cosfrac{2pi}5=A$$
                                    say.
                                    Then
                                    $$Asinfrac{pi}5=-sinfrac{pi}5left(cosfrac{4pi}{5}+cosfrac{2pi}5right)=-frac12left(sinfrac{5pi}5-sinfrac{3pi}5+sinfrac{3pi}5-
                                    sinfrac{pi}5right)=frac12sinfracpi5$$

                                    etc.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Nov 14 at 5:55









                                    Lord Shark the Unknown

                                    97k958128




                                    97k958128















                                        Popular posts from this blog

                                        Probability when a professor distributes a quiz and homework assignment to a class of n students.

                                        Aardman Animations

                                        Are they similar matrix