How to make this limit question a indeterminate form? (L-Hopital)
up vote
3
down vote
favorite
$$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$
This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.
How to solve this question?
limits
add a comment |
up vote
3
down vote
favorite
$$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$
This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.
How to solve this question?
limits
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
$$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$
This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.
How to solve this question?
limits
$$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$
This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.
How to solve this question?
limits
limits
edited Nov 14 at 6:52
Ng Chung Tak
13.6k31234
13.6k31234
asked Nov 14 at 6:35
Amogh Joshi
183
183
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
$$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$
Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
add a comment |
up vote
4
down vote
Hint:
$$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$
Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$
Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$
and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
$$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$
Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
add a comment |
up vote
3
down vote
accepted
$$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$
Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
$$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$
Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.
$$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$
Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.
answered Nov 14 at 6:41
Siong Thye Goh
93.4k1462114
93.4k1462114
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
add a comment |
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
I am getting the answer ln(7/5). Is it right?
– Amogh Joshi
Nov 14 at 6:49
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
yes, congratulations.
– Siong Thye Goh
Nov 14 at 6:51
add a comment |
up vote
4
down vote
Hint:
$$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$
Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$
Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$
and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$
add a comment |
up vote
4
down vote
Hint:
$$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$
Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$
Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$
and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$
add a comment |
up vote
4
down vote
up vote
4
down vote
Hint:
$$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$
Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$
Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$
and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$
Hint:
$$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$
Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$
Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$
and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$
edited Nov 14 at 6:45
answered Nov 14 at 6:40
lab bhattacharjee
220k15154271
220k15154271
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997880%2fhow-to-make-this-limit-question-a-indeterminate-form-l-hopital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown