How to make this limit question a indeterminate form? (L-Hopital)











up vote
3
down vote

favorite












$$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$



This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.



How to solve this question?










share|cite|improve this question




























    up vote
    3
    down vote

    favorite












    $$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$



    This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.



    How to solve this question?










    share|cite|improve this question


























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      $$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$



      This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.



      How to solve this question?










      share|cite|improve this question















      $$lim_{xto 1^+}[ln(x^7 -1) - ln(x^5 -1)]$$



      This is a question from L-Hospital rule question set. My approach was to apply log property in this question and solve it, but $ln(frac{0}{0})$ might not be right way to convert it into indeterminate form.



      How to solve this question?







      limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 14 at 6:52









      Ng Chung Tak

      13.6k31234




      13.6k31234










      asked Nov 14 at 6:35









      Amogh Joshi

      183




      183






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          $$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$



          Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.






          share|cite|improve this answer





















          • I am getting the answer ln(7/5). Is it right?
            – Amogh Joshi
            Nov 14 at 6:49










          • yes, congratulations.
            – Siong Thye Goh
            Nov 14 at 6:51


















          up vote
          4
          down vote













          Hint:



          $$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$



          Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$



          Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$



          and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997880%2fhow-to-make-this-limit-question-a-indeterminate-form-l-hopital%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote



            accepted










            $$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$



            Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.






            share|cite|improve this answer





















            • I am getting the answer ln(7/5). Is it right?
              – Amogh Joshi
              Nov 14 at 6:49










            • yes, congratulations.
              – Siong Thye Goh
              Nov 14 at 6:51















            up vote
            3
            down vote



            accepted










            $$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$



            Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.






            share|cite|improve this answer





















            • I am getting the answer ln(7/5). Is it right?
              – Amogh Joshi
              Nov 14 at 6:49










            • yes, congratulations.
              – Siong Thye Goh
              Nov 14 at 6:51













            up vote
            3
            down vote



            accepted







            up vote
            3
            down vote



            accepted






            $$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$



            Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.






            share|cite|improve this answer












            $$lim_{x to 1^+} [ln(x^7-1)- ln(x^5-1)]=ln left[lim_{xto 1^+} frac{x^7-1}{x^5-1} right]$$



            Evaluate $lim_{xto 1^+} frac{x^7-1}{x^5-1} $ first and I think you can solve the problem.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 14 at 6:41









            Siong Thye Goh

            93.4k1462114




            93.4k1462114












            • I am getting the answer ln(7/5). Is it right?
              – Amogh Joshi
              Nov 14 at 6:49










            • yes, congratulations.
              – Siong Thye Goh
              Nov 14 at 6:51


















            • I am getting the answer ln(7/5). Is it right?
              – Amogh Joshi
              Nov 14 at 6:49










            • yes, congratulations.
              – Siong Thye Goh
              Nov 14 at 6:51
















            I am getting the answer ln(7/5). Is it right?
            – Amogh Joshi
            Nov 14 at 6:49




            I am getting the answer ln(7/5). Is it right?
            – Amogh Joshi
            Nov 14 at 6:49












            yes, congratulations.
            – Siong Thye Goh
            Nov 14 at 6:51




            yes, congratulations.
            – Siong Thye Goh
            Nov 14 at 6:51










            up vote
            4
            down vote













            Hint:



            $$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$



            Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$



            Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$



            and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$






            share|cite|improve this answer



























              up vote
              4
              down vote













              Hint:



              $$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$



              Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$



              Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$



              and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$






              share|cite|improve this answer

























                up vote
                4
                down vote










                up vote
                4
                down vote









                Hint:



                $$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$



                Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$



                Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$



                and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$






                share|cite|improve this answer














                Hint:



                $$lim_{xto 1^+}left[ln(x^7 -1) - ln(x^5 -1)right]=lnleft(lim_{xto 1^+}dfrac{x^7-1}{x^5-1}right)$$



                Now use $x^n-1=(x-1)(x^{n-1}+x^{n-2}+cdots+x+1)$



                Alternatively, $dfrac{x^7-1}{x^5-1}=dfrac{dfrac{x^7-1}{x-1}}{dfrac{x^5-1}{x-1}}$



                and $$lim_{xto 1}dfrac{x^n-1}{x-1}=dfrac{d(x^n)}{dx}_{text{( at }x=1)}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Nov 14 at 6:45

























                answered Nov 14 at 6:40









                lab bhattacharjee

                220k15154271




                220k15154271






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997880%2fhow-to-make-this-limit-question-a-indeterminate-form-l-hopital%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Probability when a professor distributes a quiz and homework assignment to a class of n students.

                    Aardman Animations

                    Are they similar matrix