How to show the existence of the limit $lim_{nto infty}frac{x_n}{n}$ if $x_n$ satisfy $x^{-n}=sum_{k=1}^infty...
up vote
7
down vote
favorite
Suppose $x_n$ is the only positive solution to the equation $x^{-n}=sumlimits_{k=1}^infty (x+k)^{-n}$,how to show the existence of the limit $lim_{nto infty}frac{x_n}{n}$?
It is easy to see that ${x_n}$ is increasing.In fact, the given euation equals
$$1=sum_{k=1}^infty(1+frac{k}{x})^{-n} tag{*}$$
If $x_nge x_{n+1}$,then notice that for any fixed$ k$,$(1+frac{k}{x})^{-n}$ is increasing,thus we can get
$$frac{1}{(1+frac{k}{x_n})^n}ge frac{1}{(1+frac{k}{x_{n+1}})^n}>frac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
By summing up all k's from 1 to $infty$,we can see
$$sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}>sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
then from $(*)$ we see that the two series in the above equality are all equals to $1$,witch is a contradiction!
But it seems hard for us to show the existence of $lim_{nto infty}frac{x_n}{n}$.What I can see by the area's principle is
$$Big|sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}-int_1^infty frac{1}{(1+frac{x}{x_n})}dxBig|<frac{1}{(1+frac1{x_n})^n}$$
or
$$Big|1-frac{x_n}{n-1}(1+frac{1}{x_n})^{1-n}Big|<frac{1}{(1+frac1{x_n})^n}$$
sequences-and-series limits
add a comment |
up vote
7
down vote
favorite
Suppose $x_n$ is the only positive solution to the equation $x^{-n}=sumlimits_{k=1}^infty (x+k)^{-n}$,how to show the existence of the limit $lim_{nto infty}frac{x_n}{n}$?
It is easy to see that ${x_n}$ is increasing.In fact, the given euation equals
$$1=sum_{k=1}^infty(1+frac{k}{x})^{-n} tag{*}$$
If $x_nge x_{n+1}$,then notice that for any fixed$ k$,$(1+frac{k}{x})^{-n}$ is increasing,thus we can get
$$frac{1}{(1+frac{k}{x_n})^n}ge frac{1}{(1+frac{k}{x_{n+1}})^n}>frac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
By summing up all k's from 1 to $infty$,we can see
$$sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}>sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
then from $(*)$ we see that the two series in the above equality are all equals to $1$,witch is a contradiction!
But it seems hard for us to show the existence of $lim_{nto infty}frac{x_n}{n}$.What I can see by the area's principle is
$$Big|sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}-int_1^infty frac{1}{(1+frac{x}{x_n})}dxBig|<frac{1}{(1+frac1{x_n})^n}$$
or
$$Big|1-frac{x_n}{n-1}(1+frac{1}{x_n})^{1-n}Big|<frac{1}{(1+frac1{x_n})^n}$$
sequences-and-series limits
add a comment |
up vote
7
down vote
favorite
up vote
7
down vote
favorite
Suppose $x_n$ is the only positive solution to the equation $x^{-n}=sumlimits_{k=1}^infty (x+k)^{-n}$,how to show the existence of the limit $lim_{nto infty}frac{x_n}{n}$?
It is easy to see that ${x_n}$ is increasing.In fact, the given euation equals
$$1=sum_{k=1}^infty(1+frac{k}{x})^{-n} tag{*}$$
If $x_nge x_{n+1}$,then notice that for any fixed$ k$,$(1+frac{k}{x})^{-n}$ is increasing,thus we can get
$$frac{1}{(1+frac{k}{x_n})^n}ge frac{1}{(1+frac{k}{x_{n+1}})^n}>frac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
By summing up all k's from 1 to $infty$,we can see
$$sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}>sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
then from $(*)$ we see that the two series in the above equality are all equals to $1$,witch is a contradiction!
But it seems hard for us to show the existence of $lim_{nto infty}frac{x_n}{n}$.What I can see by the area's principle is
$$Big|sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}-int_1^infty frac{1}{(1+frac{x}{x_n})}dxBig|<frac{1}{(1+frac1{x_n})^n}$$
or
$$Big|1-frac{x_n}{n-1}(1+frac{1}{x_n})^{1-n}Big|<frac{1}{(1+frac1{x_n})^n}$$
sequences-and-series limits
Suppose $x_n$ is the only positive solution to the equation $x^{-n}=sumlimits_{k=1}^infty (x+k)^{-n}$,how to show the existence of the limit $lim_{nto infty}frac{x_n}{n}$?
It is easy to see that ${x_n}$ is increasing.In fact, the given euation equals
$$1=sum_{k=1}^infty(1+frac{k}{x})^{-n} tag{*}$$
If $x_nge x_{n+1}$,then notice that for any fixed$ k$,$(1+frac{k}{x})^{-n}$ is increasing,thus we can get
$$frac{1}{(1+frac{k}{x_n})^n}ge frac{1}{(1+frac{k}{x_{n+1}})^n}>frac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
By summing up all k's from 1 to $infty$,we can see
$$sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}>sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_{n+1}})^{n+1}}$$
then from $(*)$ we see that the two series in the above equality are all equals to $1$,witch is a contradiction!
But it seems hard for us to show the existence of $lim_{nto infty}frac{x_n}{n}$.What I can see by the area's principle is
$$Big|sum_{k=1}^inftyfrac{1}{(1+frac{k}{x_n})^n}-int_1^infty frac{1}{(1+frac{x}{x_n})}dxBig|<frac{1}{(1+frac1{x_n})^n}$$
or
$$Big|1-frac{x_n}{n-1}(1+frac{1}{x_n})^{1-n}Big|<frac{1}{(1+frac1{x_n})^n}$$
sequences-and-series limits
sequences-and-series limits
edited Nov 7 at 13:53
asked Nov 3 at 13:45
mbfkk
331113
331113
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
3
down vote
accepted
For any $n ge 2$, consider the function $displaystyle;Phi_n(x) = sum_{k=1}^infty left(frac{x}{x+k}right)^n$.
It is easy to see $Phi_n(x)$ is an increasing function over $(0,infty]$.
For small $x$, it is bounded from above by $x^n zeta(n)$ and hence decreases to $0$ as $x to 0$.
For large $x$, we can approximate the sum by an integral and $Phi_n(x)$ diverges like $displaystyle;frac{x}{n-1}$ as $x to infty$. By definition, $x_n$ is the unique root for $Phi_n(x_n) = 1$. Let $displaystyle;y_n = frac{x_n}{n}$.
For any $alpha > 0$, apply AM $ge$ GM to $n$ copies of $1 + frac{alpha}{n}$ and one copy of $1$, we obtain
$$left(1 + frac{alpha}{n}right)^{n/n+1} > frac1{n+1} left[nleft(1 + frac{alpha}{n}right) + 1 right] = 1 + frac{alpha}{n+1}$$
The inequality is strict because the $n+1$ numbers are not identical. Taking reciprocal on both sides, we get
$$left( frac{n}{n + alpha} right)^n ge left(frac{n+1}{n+1 + alpha}right)^{n+1}
$$
Replace $alpha$ by $displaystyle;frac{k}{y_n}$ for generic positive integer $k$, we obtain
$$left( frac{x_n}{x_n + k} right)^n = left( frac{n y_n}{n y_n + k} right)^n > left(frac{(n+1)y_n}{(n+1)y_n + k}right)^{n+1}$$
Summing over $k$ and using definition of $x_n$, we find
$$Phi_{n+1}(x_{n+1}) = 1 = Phi_n(x_n) > Phi_{n+1}((n+1)y_n)$$
Since $Phi_{n+1}$ is increasing, we obtain $x_{n+1} > (n+1)y_n iff y_{n+1} > y_n$.
This means $y_n$ is an increasing sequence.
We are going to show $y_n$ is bounded from above by $frac32$
(see update below for a more elementary and better upper bound).
For simplicity, let us abberivate $x_n$ and $y_n$ as $x$ and $y$. By their definition, we have
$$frac{2}{x^n} = sum_{k=0}^infty frac{1}{(x+k)^n}$$
By Abel-Plana formula, we can transform the sum on RHS to integrals. The end result is
$$begin{align}frac{3}{2x^n} &= int_0^infty frac{dk}{(x+k)^n} +
i int_0^infty frac{(x+it)^{-n} - (x-it)^{-n}}{e^{2pi t} - 1} dt\
&=frac{1}{(n-1)x^{n-1}}
+ frac{1}{x^{n-1}}int_0^infty frac{(1+is)^{-n} - (1-is)^{-n}}{e^{2pi x s}-1} ds
end{align}
$$
Multiply both sides by $nx^{n-1}$ and replace $s$ by $s/n$, we obtain
$$begin{align}frac{3}{2y} - frac{n}{n-1} &=
i int_0^infty frac{(1 + ifrac{s}{n})^{-n} - (1-ifrac{s}{n})^{-n}}{e^{2pi ys} - 1} ds\
&= 2int_0^infty frac{sinleft(ntan^{-1}left(frac{s}{n}right)right)}{left(1 + frac{t^2}{n^2}right)^{n/2}} frac{ds}{e^{2pi ys}-1}tag{*1}
end{align}
$$
For the integral on RHS, if we want its integrand to be negative, we need
$$ntan^{-1}left(frac{s}{n}right) > pi
implies frac{s}{n} > tanleft(frac{pi}{n}right) implies s > pi$$
By the time $s$ reaches $pi$, the factor $frac{1}{e^{2pi ys} - 1}$ already drops to very small. Numerically, we know $y_4 > 1$, so for $n ge 4$ and $s ge pi$, we have
$$frac{1}{e^{2pi ys} - 1} le frac{1}{e^{2pi^2} - 1} approx 2.675 times 10^{-9}$$
This implies the integral is positive. For $n ge 4$, we can deduce
$$frac{3}{2y} ge frac{n}{n-1} implies y_n le frac32left(1 - frac1nright) < frac32$$
Since $y_n$ is increasing and bounded from above by $frac32$, limit
$y_infty stackrel{def}{=} lim_{ntoinfty} y_n$ exists and $le frac32$.
For fixed $y > 0$, with help of DCT, one can show the last integral of $(*1)$
converges.
This suggests $y_infty$ is a root of following equation near $frac32$
$$frac{3}{2y} = 1 + 2int_0^infty frac{sin(s)}{e^{2pi ys} - 1} ds$$
According to DLMF,
$$int_0^infty e^{-x} frac{sin(ax)}{sinh x} dx = frac{pi}{2}cothleft(frac{pi a}{2}right) - frac1aquadtext{ for }quad a ne 0$$
We can transform our equation to
$$frac{3}{2y} = 1 + 2left[frac{1}{4y}cothleft(frac{1}{2y}right) - frac12right]
iff cothleft(frac{1}{2y}right) = 3$$
This leads to $displaystyle;y_infty = frac{1}{log 2}$.
This is consistent with the finding of another answer (currently deleted):
If $L_infty = lim_{ntoinfty}frac{n}{x_n}$ exists, then $L_infty = log 2$.
To summarize, the limit $displaystyle;frac{x_n}{n}$ exists and should equal to $displaystyle;frac{1}{log 2}$.
Update
It turns out there is a more elementary proof that $y_n$ is bounded from above by the optimal bound $displaystyle;frac{1}{log 2}$.
Recall for any $alpha > 0$. we have $1 + alpha < e^alpha$. Substitute
$alpha$ by $frac{k}{n}log 2$ for $n ge 2$ and $k ge 1$, we get
$$frac{n}{n + klog 2} = frac{1}{1 + frac{k}{n}log 2} > e^{-frac{k}{n}log 2} = 2^{-frac{k}{n}}$$
This leads to
$$Phi_nleft(frac{n}{log 2}right)
= sum_{k=1}^infty left(frac{n}{n + log 2 k}right)^n
> sum_{k=1}^infty 2^{-k}
= 1 = Phi_n(x_n)
$$
Since $Phi_n(x)$ is increasing, this means
$displaystyle;frac{n}{log 2} > x_n$ and $y_n$ is bounded from above by $displaystyle;frac{1}{log 2}$.
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
add a comment |
up vote
2
down vote
Consider the functions
$$f_n(x):=sum_{k=1}^inftyleft(frac{x}{x+k}right)^n.$$
(The series should converge for every fixed $xgeq 0$ and $ngeq 2$.)
Then the values $x_n$ are the solutions of
$$f_n(x)=1.$$
We have that $f_n(0)=0$ and because of
$$f_n'(x)=sum_{k=1}^{infty}nleft(frac{x}{x+k}right)^{n-1}frac{k}{(x+k)^2},$$
we have $f'_n(x)>0$ for $x>0$.
Moreover
$$f_n(3n)=sum_{k=1}^{infty}left(frac{3n}{3n+k}right)^ngeq3left(frac{3n}{3n+3}right)^n=3left(1+frac{1}{n}right)^{-n}.$$
Since $lim_{ntoinfty}(1+frac{1}{n})^n=e$ we have $$lim_{ntoinfty}f_n(3n)geqfrac{3}{e}>1$$ and there exists $Ninmathbb N$, such that
$$f_n(3n)>1$$
for all $ngeq N$.
Thus, for large enough $n$ we have $x_nin(0,3n)$ and
$$0leqlim_{ntoinfty}frac{x_n}{n}leq 3$$
add a comment |
up vote
2
down vote
Below is my thought of proving $limlimits_{nto infty}frac{x_n}{n}=frac{1}{ln 2}$.
For any $lambda >0$,
begin{align*}
Phi_n(lambda n)=sum_{k=1}^infty left( frac{lambda n}{lambda n+k}right)^n
end{align*}
We denote $a_{n,k}=left( frac{lambda n}{lambda n+k}right)^n$,it's easy to verify that $a_{n,k}$ is decreasing for $n$,and
begin{align*}
lim_{nto infty}a_{n,k}=e^{-k/lambda}triangleq b_k
end{align*}
We notice that $sum_{k=1}^infty b_k=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}$,$a_{n,k}<a_{2,k}$,$ngeq 2$,$sum a_{2,k}$is convergent.Meanwhile ,we can verify the following proposition(A similar to Lebesgue's dominated convergent theorem)
Suppose${a_{n,k}}$is a positive binary index sequence,and for all $kin mathbb{N}_+$we have
$a_{n,k}to b_k$,$ntoinfty$,besides $|a_{n,k}|<a_k$, $sum_{k=1}^infty a_k$ is convergent.Then
begin{align*}
lim_{nto infty}sum_{k=1}^infty a_{n,k}=sum_{k=1}^infty b_k
end{align*}
So thanks to the above proposition can see
begin{align*}
lim_{nto infty}Phi_n(lambda n)=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}
end{align*}
Specially,we take $lambda=frac{1}{ln 2}$,then $lim_{nto infty}Phi_nleft(frac{ n}{ln 2}right)=1=Phi_n(x_n)$.Thus for all $s>frac{1}{ln 2}$,since
begin{align*}
lim_{nto infty }Phi_n(s n)=frac{1}{e^{1/s}-1}>1=lim_{nto infty}Phi_n(x_n)
end{align*}
we see that there exists $N$,such that for all$ n>N$,
begin{align*}
Phi_n(s n)>Phi_n(x_n)Rightarrow sn>x_n,forall n>N
end{align*}
This implies $A=limlimits_{nto infty }y_nleqslant s$,thus $Aleqslant frac{1}{ln 2}$.Similarly we can prove $Ageqslant frac{1}{ln 2}$,and finally we get $A=frac{1}{ln 2}$.
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
add a comment |
up vote
0
down vote
We can rewrite $$x^{-n} = sum_{k=1}^infty (x+k)^{-n}$$
as
$$1= sum_{k=1}^infty e^{- nln (1+ k/x_n)}.$$
Now
$ln (1+k/x_n) le k/x_n$, therefore
$$1 le sum_{k=1}^infty e^{-frac{n}{x_n}k} = frac{1}{e^{n/x_n}-1}.$$
From this it follows that
$$ (*) quad n /x_n ge ln 2.$$
Suppose now that $limsup_{ntoinfty} n/x_n=M>c$. Then for all $n$ large, we have $n/x_n>c$ and
begin{align*} 1 &= sum_{k=1}^infty e^{-n ln (1+frac{k}{n} times frac{n}{x_n})}\
& le sum_{k=1}^infty e^{-n ln (1+ frac{k}{n} c)}\
& = sum_{k=1}^infty (1+frac{k}{n}c)^{-n} \
& to sum_{k=1}^infty e^{-kc}=frac{1}{e^c-1}.
end{align*}
by dominated convergence (note: $(1+frac{k}{n}c)^{-n} le (1+frac{kc}{2})^{-2}$).
Thus, $e^c-1 le 1$, or $c le ln 2$. It follows that
$$(**) quad limsup n/x_n le ln 2.$$
Now $(*)$ and $(**)$ give
$$lim_{ntoinfty} frac{x_n}{n} = sup_{n} frac{x_n}{n} = frac{1}{ln 2}.$$
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
For any $n ge 2$, consider the function $displaystyle;Phi_n(x) = sum_{k=1}^infty left(frac{x}{x+k}right)^n$.
It is easy to see $Phi_n(x)$ is an increasing function over $(0,infty]$.
For small $x$, it is bounded from above by $x^n zeta(n)$ and hence decreases to $0$ as $x to 0$.
For large $x$, we can approximate the sum by an integral and $Phi_n(x)$ diverges like $displaystyle;frac{x}{n-1}$ as $x to infty$. By definition, $x_n$ is the unique root for $Phi_n(x_n) = 1$. Let $displaystyle;y_n = frac{x_n}{n}$.
For any $alpha > 0$, apply AM $ge$ GM to $n$ copies of $1 + frac{alpha}{n}$ and one copy of $1$, we obtain
$$left(1 + frac{alpha}{n}right)^{n/n+1} > frac1{n+1} left[nleft(1 + frac{alpha}{n}right) + 1 right] = 1 + frac{alpha}{n+1}$$
The inequality is strict because the $n+1$ numbers are not identical. Taking reciprocal on both sides, we get
$$left( frac{n}{n + alpha} right)^n ge left(frac{n+1}{n+1 + alpha}right)^{n+1}
$$
Replace $alpha$ by $displaystyle;frac{k}{y_n}$ for generic positive integer $k$, we obtain
$$left( frac{x_n}{x_n + k} right)^n = left( frac{n y_n}{n y_n + k} right)^n > left(frac{(n+1)y_n}{(n+1)y_n + k}right)^{n+1}$$
Summing over $k$ and using definition of $x_n$, we find
$$Phi_{n+1}(x_{n+1}) = 1 = Phi_n(x_n) > Phi_{n+1}((n+1)y_n)$$
Since $Phi_{n+1}$ is increasing, we obtain $x_{n+1} > (n+1)y_n iff y_{n+1} > y_n$.
This means $y_n$ is an increasing sequence.
We are going to show $y_n$ is bounded from above by $frac32$
(see update below for a more elementary and better upper bound).
For simplicity, let us abberivate $x_n$ and $y_n$ as $x$ and $y$. By their definition, we have
$$frac{2}{x^n} = sum_{k=0}^infty frac{1}{(x+k)^n}$$
By Abel-Plana formula, we can transform the sum on RHS to integrals. The end result is
$$begin{align}frac{3}{2x^n} &= int_0^infty frac{dk}{(x+k)^n} +
i int_0^infty frac{(x+it)^{-n} - (x-it)^{-n}}{e^{2pi t} - 1} dt\
&=frac{1}{(n-1)x^{n-1}}
+ frac{1}{x^{n-1}}int_0^infty frac{(1+is)^{-n} - (1-is)^{-n}}{e^{2pi x s}-1} ds
end{align}
$$
Multiply both sides by $nx^{n-1}$ and replace $s$ by $s/n$, we obtain
$$begin{align}frac{3}{2y} - frac{n}{n-1} &=
i int_0^infty frac{(1 + ifrac{s}{n})^{-n} - (1-ifrac{s}{n})^{-n}}{e^{2pi ys} - 1} ds\
&= 2int_0^infty frac{sinleft(ntan^{-1}left(frac{s}{n}right)right)}{left(1 + frac{t^2}{n^2}right)^{n/2}} frac{ds}{e^{2pi ys}-1}tag{*1}
end{align}
$$
For the integral on RHS, if we want its integrand to be negative, we need
$$ntan^{-1}left(frac{s}{n}right) > pi
implies frac{s}{n} > tanleft(frac{pi}{n}right) implies s > pi$$
By the time $s$ reaches $pi$, the factor $frac{1}{e^{2pi ys} - 1}$ already drops to very small. Numerically, we know $y_4 > 1$, so for $n ge 4$ and $s ge pi$, we have
$$frac{1}{e^{2pi ys} - 1} le frac{1}{e^{2pi^2} - 1} approx 2.675 times 10^{-9}$$
This implies the integral is positive. For $n ge 4$, we can deduce
$$frac{3}{2y} ge frac{n}{n-1} implies y_n le frac32left(1 - frac1nright) < frac32$$
Since $y_n$ is increasing and bounded from above by $frac32$, limit
$y_infty stackrel{def}{=} lim_{ntoinfty} y_n$ exists and $le frac32$.
For fixed $y > 0$, with help of DCT, one can show the last integral of $(*1)$
converges.
This suggests $y_infty$ is a root of following equation near $frac32$
$$frac{3}{2y} = 1 + 2int_0^infty frac{sin(s)}{e^{2pi ys} - 1} ds$$
According to DLMF,
$$int_0^infty e^{-x} frac{sin(ax)}{sinh x} dx = frac{pi}{2}cothleft(frac{pi a}{2}right) - frac1aquadtext{ for }quad a ne 0$$
We can transform our equation to
$$frac{3}{2y} = 1 + 2left[frac{1}{4y}cothleft(frac{1}{2y}right) - frac12right]
iff cothleft(frac{1}{2y}right) = 3$$
This leads to $displaystyle;y_infty = frac{1}{log 2}$.
This is consistent with the finding of another answer (currently deleted):
If $L_infty = lim_{ntoinfty}frac{n}{x_n}$ exists, then $L_infty = log 2$.
To summarize, the limit $displaystyle;frac{x_n}{n}$ exists and should equal to $displaystyle;frac{1}{log 2}$.
Update
It turns out there is a more elementary proof that $y_n$ is bounded from above by the optimal bound $displaystyle;frac{1}{log 2}$.
Recall for any $alpha > 0$. we have $1 + alpha < e^alpha$. Substitute
$alpha$ by $frac{k}{n}log 2$ for $n ge 2$ and $k ge 1$, we get
$$frac{n}{n + klog 2} = frac{1}{1 + frac{k}{n}log 2} > e^{-frac{k}{n}log 2} = 2^{-frac{k}{n}}$$
This leads to
$$Phi_nleft(frac{n}{log 2}right)
= sum_{k=1}^infty left(frac{n}{n + log 2 k}right)^n
> sum_{k=1}^infty 2^{-k}
= 1 = Phi_n(x_n)
$$
Since $Phi_n(x)$ is increasing, this means
$displaystyle;frac{n}{log 2} > x_n$ and $y_n$ is bounded from above by $displaystyle;frac{1}{log 2}$.
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
add a comment |
up vote
3
down vote
accepted
For any $n ge 2$, consider the function $displaystyle;Phi_n(x) = sum_{k=1}^infty left(frac{x}{x+k}right)^n$.
It is easy to see $Phi_n(x)$ is an increasing function over $(0,infty]$.
For small $x$, it is bounded from above by $x^n zeta(n)$ and hence decreases to $0$ as $x to 0$.
For large $x$, we can approximate the sum by an integral and $Phi_n(x)$ diverges like $displaystyle;frac{x}{n-1}$ as $x to infty$. By definition, $x_n$ is the unique root for $Phi_n(x_n) = 1$. Let $displaystyle;y_n = frac{x_n}{n}$.
For any $alpha > 0$, apply AM $ge$ GM to $n$ copies of $1 + frac{alpha}{n}$ and one copy of $1$, we obtain
$$left(1 + frac{alpha}{n}right)^{n/n+1} > frac1{n+1} left[nleft(1 + frac{alpha}{n}right) + 1 right] = 1 + frac{alpha}{n+1}$$
The inequality is strict because the $n+1$ numbers are not identical. Taking reciprocal on both sides, we get
$$left( frac{n}{n + alpha} right)^n ge left(frac{n+1}{n+1 + alpha}right)^{n+1}
$$
Replace $alpha$ by $displaystyle;frac{k}{y_n}$ for generic positive integer $k$, we obtain
$$left( frac{x_n}{x_n + k} right)^n = left( frac{n y_n}{n y_n + k} right)^n > left(frac{(n+1)y_n}{(n+1)y_n + k}right)^{n+1}$$
Summing over $k$ and using definition of $x_n$, we find
$$Phi_{n+1}(x_{n+1}) = 1 = Phi_n(x_n) > Phi_{n+1}((n+1)y_n)$$
Since $Phi_{n+1}$ is increasing, we obtain $x_{n+1} > (n+1)y_n iff y_{n+1} > y_n$.
This means $y_n$ is an increasing sequence.
We are going to show $y_n$ is bounded from above by $frac32$
(see update below for a more elementary and better upper bound).
For simplicity, let us abberivate $x_n$ and $y_n$ as $x$ and $y$. By their definition, we have
$$frac{2}{x^n} = sum_{k=0}^infty frac{1}{(x+k)^n}$$
By Abel-Plana formula, we can transform the sum on RHS to integrals. The end result is
$$begin{align}frac{3}{2x^n} &= int_0^infty frac{dk}{(x+k)^n} +
i int_0^infty frac{(x+it)^{-n} - (x-it)^{-n}}{e^{2pi t} - 1} dt\
&=frac{1}{(n-1)x^{n-1}}
+ frac{1}{x^{n-1}}int_0^infty frac{(1+is)^{-n} - (1-is)^{-n}}{e^{2pi x s}-1} ds
end{align}
$$
Multiply both sides by $nx^{n-1}$ and replace $s$ by $s/n$, we obtain
$$begin{align}frac{3}{2y} - frac{n}{n-1} &=
i int_0^infty frac{(1 + ifrac{s}{n})^{-n} - (1-ifrac{s}{n})^{-n}}{e^{2pi ys} - 1} ds\
&= 2int_0^infty frac{sinleft(ntan^{-1}left(frac{s}{n}right)right)}{left(1 + frac{t^2}{n^2}right)^{n/2}} frac{ds}{e^{2pi ys}-1}tag{*1}
end{align}
$$
For the integral on RHS, if we want its integrand to be negative, we need
$$ntan^{-1}left(frac{s}{n}right) > pi
implies frac{s}{n} > tanleft(frac{pi}{n}right) implies s > pi$$
By the time $s$ reaches $pi$, the factor $frac{1}{e^{2pi ys} - 1}$ already drops to very small. Numerically, we know $y_4 > 1$, so for $n ge 4$ and $s ge pi$, we have
$$frac{1}{e^{2pi ys} - 1} le frac{1}{e^{2pi^2} - 1} approx 2.675 times 10^{-9}$$
This implies the integral is positive. For $n ge 4$, we can deduce
$$frac{3}{2y} ge frac{n}{n-1} implies y_n le frac32left(1 - frac1nright) < frac32$$
Since $y_n$ is increasing and bounded from above by $frac32$, limit
$y_infty stackrel{def}{=} lim_{ntoinfty} y_n$ exists and $le frac32$.
For fixed $y > 0$, with help of DCT, one can show the last integral of $(*1)$
converges.
This suggests $y_infty$ is a root of following equation near $frac32$
$$frac{3}{2y} = 1 + 2int_0^infty frac{sin(s)}{e^{2pi ys} - 1} ds$$
According to DLMF,
$$int_0^infty e^{-x} frac{sin(ax)}{sinh x} dx = frac{pi}{2}cothleft(frac{pi a}{2}right) - frac1aquadtext{ for }quad a ne 0$$
We can transform our equation to
$$frac{3}{2y} = 1 + 2left[frac{1}{4y}cothleft(frac{1}{2y}right) - frac12right]
iff cothleft(frac{1}{2y}right) = 3$$
This leads to $displaystyle;y_infty = frac{1}{log 2}$.
This is consistent with the finding of another answer (currently deleted):
If $L_infty = lim_{ntoinfty}frac{n}{x_n}$ exists, then $L_infty = log 2$.
To summarize, the limit $displaystyle;frac{x_n}{n}$ exists and should equal to $displaystyle;frac{1}{log 2}$.
Update
It turns out there is a more elementary proof that $y_n$ is bounded from above by the optimal bound $displaystyle;frac{1}{log 2}$.
Recall for any $alpha > 0$. we have $1 + alpha < e^alpha$. Substitute
$alpha$ by $frac{k}{n}log 2$ for $n ge 2$ and $k ge 1$, we get
$$frac{n}{n + klog 2} = frac{1}{1 + frac{k}{n}log 2} > e^{-frac{k}{n}log 2} = 2^{-frac{k}{n}}$$
This leads to
$$Phi_nleft(frac{n}{log 2}right)
= sum_{k=1}^infty left(frac{n}{n + log 2 k}right)^n
> sum_{k=1}^infty 2^{-k}
= 1 = Phi_n(x_n)
$$
Since $Phi_n(x)$ is increasing, this means
$displaystyle;frac{n}{log 2} > x_n$ and $y_n$ is bounded from above by $displaystyle;frac{1}{log 2}$.
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
For any $n ge 2$, consider the function $displaystyle;Phi_n(x) = sum_{k=1}^infty left(frac{x}{x+k}right)^n$.
It is easy to see $Phi_n(x)$ is an increasing function over $(0,infty]$.
For small $x$, it is bounded from above by $x^n zeta(n)$ and hence decreases to $0$ as $x to 0$.
For large $x$, we can approximate the sum by an integral and $Phi_n(x)$ diverges like $displaystyle;frac{x}{n-1}$ as $x to infty$. By definition, $x_n$ is the unique root for $Phi_n(x_n) = 1$. Let $displaystyle;y_n = frac{x_n}{n}$.
For any $alpha > 0$, apply AM $ge$ GM to $n$ copies of $1 + frac{alpha}{n}$ and one copy of $1$, we obtain
$$left(1 + frac{alpha}{n}right)^{n/n+1} > frac1{n+1} left[nleft(1 + frac{alpha}{n}right) + 1 right] = 1 + frac{alpha}{n+1}$$
The inequality is strict because the $n+1$ numbers are not identical. Taking reciprocal on both sides, we get
$$left( frac{n}{n + alpha} right)^n ge left(frac{n+1}{n+1 + alpha}right)^{n+1}
$$
Replace $alpha$ by $displaystyle;frac{k}{y_n}$ for generic positive integer $k$, we obtain
$$left( frac{x_n}{x_n + k} right)^n = left( frac{n y_n}{n y_n + k} right)^n > left(frac{(n+1)y_n}{(n+1)y_n + k}right)^{n+1}$$
Summing over $k$ and using definition of $x_n$, we find
$$Phi_{n+1}(x_{n+1}) = 1 = Phi_n(x_n) > Phi_{n+1}((n+1)y_n)$$
Since $Phi_{n+1}$ is increasing, we obtain $x_{n+1} > (n+1)y_n iff y_{n+1} > y_n$.
This means $y_n$ is an increasing sequence.
We are going to show $y_n$ is bounded from above by $frac32$
(see update below for a more elementary and better upper bound).
For simplicity, let us abberivate $x_n$ and $y_n$ as $x$ and $y$. By their definition, we have
$$frac{2}{x^n} = sum_{k=0}^infty frac{1}{(x+k)^n}$$
By Abel-Plana formula, we can transform the sum on RHS to integrals. The end result is
$$begin{align}frac{3}{2x^n} &= int_0^infty frac{dk}{(x+k)^n} +
i int_0^infty frac{(x+it)^{-n} - (x-it)^{-n}}{e^{2pi t} - 1} dt\
&=frac{1}{(n-1)x^{n-1}}
+ frac{1}{x^{n-1}}int_0^infty frac{(1+is)^{-n} - (1-is)^{-n}}{e^{2pi x s}-1} ds
end{align}
$$
Multiply both sides by $nx^{n-1}$ and replace $s$ by $s/n$, we obtain
$$begin{align}frac{3}{2y} - frac{n}{n-1} &=
i int_0^infty frac{(1 + ifrac{s}{n})^{-n} - (1-ifrac{s}{n})^{-n}}{e^{2pi ys} - 1} ds\
&= 2int_0^infty frac{sinleft(ntan^{-1}left(frac{s}{n}right)right)}{left(1 + frac{t^2}{n^2}right)^{n/2}} frac{ds}{e^{2pi ys}-1}tag{*1}
end{align}
$$
For the integral on RHS, if we want its integrand to be negative, we need
$$ntan^{-1}left(frac{s}{n}right) > pi
implies frac{s}{n} > tanleft(frac{pi}{n}right) implies s > pi$$
By the time $s$ reaches $pi$, the factor $frac{1}{e^{2pi ys} - 1}$ already drops to very small. Numerically, we know $y_4 > 1$, so for $n ge 4$ and $s ge pi$, we have
$$frac{1}{e^{2pi ys} - 1} le frac{1}{e^{2pi^2} - 1} approx 2.675 times 10^{-9}$$
This implies the integral is positive. For $n ge 4$, we can deduce
$$frac{3}{2y} ge frac{n}{n-1} implies y_n le frac32left(1 - frac1nright) < frac32$$
Since $y_n$ is increasing and bounded from above by $frac32$, limit
$y_infty stackrel{def}{=} lim_{ntoinfty} y_n$ exists and $le frac32$.
For fixed $y > 0$, with help of DCT, one can show the last integral of $(*1)$
converges.
This suggests $y_infty$ is a root of following equation near $frac32$
$$frac{3}{2y} = 1 + 2int_0^infty frac{sin(s)}{e^{2pi ys} - 1} ds$$
According to DLMF,
$$int_0^infty e^{-x} frac{sin(ax)}{sinh x} dx = frac{pi}{2}cothleft(frac{pi a}{2}right) - frac1aquadtext{ for }quad a ne 0$$
We can transform our equation to
$$frac{3}{2y} = 1 + 2left[frac{1}{4y}cothleft(frac{1}{2y}right) - frac12right]
iff cothleft(frac{1}{2y}right) = 3$$
This leads to $displaystyle;y_infty = frac{1}{log 2}$.
This is consistent with the finding of another answer (currently deleted):
If $L_infty = lim_{ntoinfty}frac{n}{x_n}$ exists, then $L_infty = log 2$.
To summarize, the limit $displaystyle;frac{x_n}{n}$ exists and should equal to $displaystyle;frac{1}{log 2}$.
Update
It turns out there is a more elementary proof that $y_n$ is bounded from above by the optimal bound $displaystyle;frac{1}{log 2}$.
Recall for any $alpha > 0$. we have $1 + alpha < e^alpha$. Substitute
$alpha$ by $frac{k}{n}log 2$ for $n ge 2$ and $k ge 1$, we get
$$frac{n}{n + klog 2} = frac{1}{1 + frac{k}{n}log 2} > e^{-frac{k}{n}log 2} = 2^{-frac{k}{n}}$$
This leads to
$$Phi_nleft(frac{n}{log 2}right)
= sum_{k=1}^infty left(frac{n}{n + log 2 k}right)^n
> sum_{k=1}^infty 2^{-k}
= 1 = Phi_n(x_n)
$$
Since $Phi_n(x)$ is increasing, this means
$displaystyle;frac{n}{log 2} > x_n$ and $y_n$ is bounded from above by $displaystyle;frac{1}{log 2}$.
For any $n ge 2$, consider the function $displaystyle;Phi_n(x) = sum_{k=1}^infty left(frac{x}{x+k}right)^n$.
It is easy to see $Phi_n(x)$ is an increasing function over $(0,infty]$.
For small $x$, it is bounded from above by $x^n zeta(n)$ and hence decreases to $0$ as $x to 0$.
For large $x$, we can approximate the sum by an integral and $Phi_n(x)$ diverges like $displaystyle;frac{x}{n-1}$ as $x to infty$. By definition, $x_n$ is the unique root for $Phi_n(x_n) = 1$. Let $displaystyle;y_n = frac{x_n}{n}$.
For any $alpha > 0$, apply AM $ge$ GM to $n$ copies of $1 + frac{alpha}{n}$ and one copy of $1$, we obtain
$$left(1 + frac{alpha}{n}right)^{n/n+1} > frac1{n+1} left[nleft(1 + frac{alpha}{n}right) + 1 right] = 1 + frac{alpha}{n+1}$$
The inequality is strict because the $n+1$ numbers are not identical. Taking reciprocal on both sides, we get
$$left( frac{n}{n + alpha} right)^n ge left(frac{n+1}{n+1 + alpha}right)^{n+1}
$$
Replace $alpha$ by $displaystyle;frac{k}{y_n}$ for generic positive integer $k$, we obtain
$$left( frac{x_n}{x_n + k} right)^n = left( frac{n y_n}{n y_n + k} right)^n > left(frac{(n+1)y_n}{(n+1)y_n + k}right)^{n+1}$$
Summing over $k$ and using definition of $x_n$, we find
$$Phi_{n+1}(x_{n+1}) = 1 = Phi_n(x_n) > Phi_{n+1}((n+1)y_n)$$
Since $Phi_{n+1}$ is increasing, we obtain $x_{n+1} > (n+1)y_n iff y_{n+1} > y_n$.
This means $y_n$ is an increasing sequence.
We are going to show $y_n$ is bounded from above by $frac32$
(see update below for a more elementary and better upper bound).
For simplicity, let us abberivate $x_n$ and $y_n$ as $x$ and $y$. By their definition, we have
$$frac{2}{x^n} = sum_{k=0}^infty frac{1}{(x+k)^n}$$
By Abel-Plana formula, we can transform the sum on RHS to integrals. The end result is
$$begin{align}frac{3}{2x^n} &= int_0^infty frac{dk}{(x+k)^n} +
i int_0^infty frac{(x+it)^{-n} - (x-it)^{-n}}{e^{2pi t} - 1} dt\
&=frac{1}{(n-1)x^{n-1}}
+ frac{1}{x^{n-1}}int_0^infty frac{(1+is)^{-n} - (1-is)^{-n}}{e^{2pi x s}-1} ds
end{align}
$$
Multiply both sides by $nx^{n-1}$ and replace $s$ by $s/n$, we obtain
$$begin{align}frac{3}{2y} - frac{n}{n-1} &=
i int_0^infty frac{(1 + ifrac{s}{n})^{-n} - (1-ifrac{s}{n})^{-n}}{e^{2pi ys} - 1} ds\
&= 2int_0^infty frac{sinleft(ntan^{-1}left(frac{s}{n}right)right)}{left(1 + frac{t^2}{n^2}right)^{n/2}} frac{ds}{e^{2pi ys}-1}tag{*1}
end{align}
$$
For the integral on RHS, if we want its integrand to be negative, we need
$$ntan^{-1}left(frac{s}{n}right) > pi
implies frac{s}{n} > tanleft(frac{pi}{n}right) implies s > pi$$
By the time $s$ reaches $pi$, the factor $frac{1}{e^{2pi ys} - 1}$ already drops to very small. Numerically, we know $y_4 > 1$, so for $n ge 4$ and $s ge pi$, we have
$$frac{1}{e^{2pi ys} - 1} le frac{1}{e^{2pi^2} - 1} approx 2.675 times 10^{-9}$$
This implies the integral is positive. For $n ge 4$, we can deduce
$$frac{3}{2y} ge frac{n}{n-1} implies y_n le frac32left(1 - frac1nright) < frac32$$
Since $y_n$ is increasing and bounded from above by $frac32$, limit
$y_infty stackrel{def}{=} lim_{ntoinfty} y_n$ exists and $le frac32$.
For fixed $y > 0$, with help of DCT, one can show the last integral of $(*1)$
converges.
This suggests $y_infty$ is a root of following equation near $frac32$
$$frac{3}{2y} = 1 + 2int_0^infty frac{sin(s)}{e^{2pi ys} - 1} ds$$
According to DLMF,
$$int_0^infty e^{-x} frac{sin(ax)}{sinh x} dx = frac{pi}{2}cothleft(frac{pi a}{2}right) - frac1aquadtext{ for }quad a ne 0$$
We can transform our equation to
$$frac{3}{2y} = 1 + 2left[frac{1}{4y}cothleft(frac{1}{2y}right) - frac12right]
iff cothleft(frac{1}{2y}right) = 3$$
This leads to $displaystyle;y_infty = frac{1}{log 2}$.
This is consistent with the finding of another answer (currently deleted):
If $L_infty = lim_{ntoinfty}frac{n}{x_n}$ exists, then $L_infty = log 2$.
To summarize, the limit $displaystyle;frac{x_n}{n}$ exists and should equal to $displaystyle;frac{1}{log 2}$.
Update
It turns out there is a more elementary proof that $y_n$ is bounded from above by the optimal bound $displaystyle;frac{1}{log 2}$.
Recall for any $alpha > 0$. we have $1 + alpha < e^alpha$. Substitute
$alpha$ by $frac{k}{n}log 2$ for $n ge 2$ and $k ge 1$, we get
$$frac{n}{n + klog 2} = frac{1}{1 + frac{k}{n}log 2} > e^{-frac{k}{n}log 2} = 2^{-frac{k}{n}}$$
This leads to
$$Phi_nleft(frac{n}{log 2}right)
= sum_{k=1}^infty left(frac{n}{n + log 2 k}right)^n
> sum_{k=1}^infty 2^{-k}
= 1 = Phi_n(x_n)
$$
Since $Phi_n(x)$ is increasing, this means
$displaystyle;frac{n}{log 2} > x_n$ and $y_n$ is bounded from above by $displaystyle;frac{1}{log 2}$.
edited Nov 7 at 19:55
answered Nov 7 at 17:08
achille hui
93.4k5127251
93.4k5127251
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
add a comment |
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
Nice done! Thanks for your reply.By the way,how can we prove that the limit is $frac1{log 2}$?,i.e. it's no less than $frac1{log 2}$.
– mbfkk
Nov 8 at 11:28
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
@mbfkk I don't have a 'rigorous' proof that $y_infty = frac{1}{log 2}$, otherwise I would include that in my answer. I've already tried a few tricks but none of them work.
– achille hui
Nov 8 at 11:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
I have got a proof that $y_infty=frac{1}{ln 2}$,see the third floor.
– mbfkk
Nov 9 at 8:44
add a comment |
up vote
2
down vote
Consider the functions
$$f_n(x):=sum_{k=1}^inftyleft(frac{x}{x+k}right)^n.$$
(The series should converge for every fixed $xgeq 0$ and $ngeq 2$.)
Then the values $x_n$ are the solutions of
$$f_n(x)=1.$$
We have that $f_n(0)=0$ and because of
$$f_n'(x)=sum_{k=1}^{infty}nleft(frac{x}{x+k}right)^{n-1}frac{k}{(x+k)^2},$$
we have $f'_n(x)>0$ for $x>0$.
Moreover
$$f_n(3n)=sum_{k=1}^{infty}left(frac{3n}{3n+k}right)^ngeq3left(frac{3n}{3n+3}right)^n=3left(1+frac{1}{n}right)^{-n}.$$
Since $lim_{ntoinfty}(1+frac{1}{n})^n=e$ we have $$lim_{ntoinfty}f_n(3n)geqfrac{3}{e}>1$$ and there exists $Ninmathbb N$, such that
$$f_n(3n)>1$$
for all $ngeq N$.
Thus, for large enough $n$ we have $x_nin(0,3n)$ and
$$0leqlim_{ntoinfty}frac{x_n}{n}leq 3$$
add a comment |
up vote
2
down vote
Consider the functions
$$f_n(x):=sum_{k=1}^inftyleft(frac{x}{x+k}right)^n.$$
(The series should converge for every fixed $xgeq 0$ and $ngeq 2$.)
Then the values $x_n$ are the solutions of
$$f_n(x)=1.$$
We have that $f_n(0)=0$ and because of
$$f_n'(x)=sum_{k=1}^{infty}nleft(frac{x}{x+k}right)^{n-1}frac{k}{(x+k)^2},$$
we have $f'_n(x)>0$ for $x>0$.
Moreover
$$f_n(3n)=sum_{k=1}^{infty}left(frac{3n}{3n+k}right)^ngeq3left(frac{3n}{3n+3}right)^n=3left(1+frac{1}{n}right)^{-n}.$$
Since $lim_{ntoinfty}(1+frac{1}{n})^n=e$ we have $$lim_{ntoinfty}f_n(3n)geqfrac{3}{e}>1$$ and there exists $Ninmathbb N$, such that
$$f_n(3n)>1$$
for all $ngeq N$.
Thus, for large enough $n$ we have $x_nin(0,3n)$ and
$$0leqlim_{ntoinfty}frac{x_n}{n}leq 3$$
add a comment |
up vote
2
down vote
up vote
2
down vote
Consider the functions
$$f_n(x):=sum_{k=1}^inftyleft(frac{x}{x+k}right)^n.$$
(The series should converge for every fixed $xgeq 0$ and $ngeq 2$.)
Then the values $x_n$ are the solutions of
$$f_n(x)=1.$$
We have that $f_n(0)=0$ and because of
$$f_n'(x)=sum_{k=1}^{infty}nleft(frac{x}{x+k}right)^{n-1}frac{k}{(x+k)^2},$$
we have $f'_n(x)>0$ for $x>0$.
Moreover
$$f_n(3n)=sum_{k=1}^{infty}left(frac{3n}{3n+k}right)^ngeq3left(frac{3n}{3n+3}right)^n=3left(1+frac{1}{n}right)^{-n}.$$
Since $lim_{ntoinfty}(1+frac{1}{n})^n=e$ we have $$lim_{ntoinfty}f_n(3n)geqfrac{3}{e}>1$$ and there exists $Ninmathbb N$, such that
$$f_n(3n)>1$$
for all $ngeq N$.
Thus, for large enough $n$ we have $x_nin(0,3n)$ and
$$0leqlim_{ntoinfty}frac{x_n}{n}leq 3$$
Consider the functions
$$f_n(x):=sum_{k=1}^inftyleft(frac{x}{x+k}right)^n.$$
(The series should converge for every fixed $xgeq 0$ and $ngeq 2$.)
Then the values $x_n$ are the solutions of
$$f_n(x)=1.$$
We have that $f_n(0)=0$ and because of
$$f_n'(x)=sum_{k=1}^{infty}nleft(frac{x}{x+k}right)^{n-1}frac{k}{(x+k)^2},$$
we have $f'_n(x)>0$ for $x>0$.
Moreover
$$f_n(3n)=sum_{k=1}^{infty}left(frac{3n}{3n+k}right)^ngeq3left(frac{3n}{3n+3}right)^n=3left(1+frac{1}{n}right)^{-n}.$$
Since $lim_{ntoinfty}(1+frac{1}{n})^n=e$ we have $$lim_{ntoinfty}f_n(3n)geqfrac{3}{e}>1$$ and there exists $Ninmathbb N$, such that
$$f_n(3n)>1$$
for all $ngeq N$.
Thus, for large enough $n$ we have $x_nin(0,3n)$ and
$$0leqlim_{ntoinfty}frac{x_n}{n}leq 3$$
edited Nov 7 at 18:42
answered Nov 7 at 11:58
weee
4608
4608
add a comment |
add a comment |
up vote
2
down vote
Below is my thought of proving $limlimits_{nto infty}frac{x_n}{n}=frac{1}{ln 2}$.
For any $lambda >0$,
begin{align*}
Phi_n(lambda n)=sum_{k=1}^infty left( frac{lambda n}{lambda n+k}right)^n
end{align*}
We denote $a_{n,k}=left( frac{lambda n}{lambda n+k}right)^n$,it's easy to verify that $a_{n,k}$ is decreasing for $n$,and
begin{align*}
lim_{nto infty}a_{n,k}=e^{-k/lambda}triangleq b_k
end{align*}
We notice that $sum_{k=1}^infty b_k=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}$,$a_{n,k}<a_{2,k}$,$ngeq 2$,$sum a_{2,k}$is convergent.Meanwhile ,we can verify the following proposition(A similar to Lebesgue's dominated convergent theorem)
Suppose${a_{n,k}}$is a positive binary index sequence,and for all $kin mathbb{N}_+$we have
$a_{n,k}to b_k$,$ntoinfty$,besides $|a_{n,k}|<a_k$, $sum_{k=1}^infty a_k$ is convergent.Then
begin{align*}
lim_{nto infty}sum_{k=1}^infty a_{n,k}=sum_{k=1}^infty b_k
end{align*}
So thanks to the above proposition can see
begin{align*}
lim_{nto infty}Phi_n(lambda n)=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}
end{align*}
Specially,we take $lambda=frac{1}{ln 2}$,then $lim_{nto infty}Phi_nleft(frac{ n}{ln 2}right)=1=Phi_n(x_n)$.Thus for all $s>frac{1}{ln 2}$,since
begin{align*}
lim_{nto infty }Phi_n(s n)=frac{1}{e^{1/s}-1}>1=lim_{nto infty}Phi_n(x_n)
end{align*}
we see that there exists $N$,such that for all$ n>N$,
begin{align*}
Phi_n(s n)>Phi_n(x_n)Rightarrow sn>x_n,forall n>N
end{align*}
This implies $A=limlimits_{nto infty }y_nleqslant s$,thus $Aleqslant frac{1}{ln 2}$.Similarly we can prove $Ageqslant frac{1}{ln 2}$,and finally we get $A=frac{1}{ln 2}$.
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
add a comment |
up vote
2
down vote
Below is my thought of proving $limlimits_{nto infty}frac{x_n}{n}=frac{1}{ln 2}$.
For any $lambda >0$,
begin{align*}
Phi_n(lambda n)=sum_{k=1}^infty left( frac{lambda n}{lambda n+k}right)^n
end{align*}
We denote $a_{n,k}=left( frac{lambda n}{lambda n+k}right)^n$,it's easy to verify that $a_{n,k}$ is decreasing for $n$,and
begin{align*}
lim_{nto infty}a_{n,k}=e^{-k/lambda}triangleq b_k
end{align*}
We notice that $sum_{k=1}^infty b_k=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}$,$a_{n,k}<a_{2,k}$,$ngeq 2$,$sum a_{2,k}$is convergent.Meanwhile ,we can verify the following proposition(A similar to Lebesgue's dominated convergent theorem)
Suppose${a_{n,k}}$is a positive binary index sequence,and for all $kin mathbb{N}_+$we have
$a_{n,k}to b_k$,$ntoinfty$,besides $|a_{n,k}|<a_k$, $sum_{k=1}^infty a_k$ is convergent.Then
begin{align*}
lim_{nto infty}sum_{k=1}^infty a_{n,k}=sum_{k=1}^infty b_k
end{align*}
So thanks to the above proposition can see
begin{align*}
lim_{nto infty}Phi_n(lambda n)=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}
end{align*}
Specially,we take $lambda=frac{1}{ln 2}$,then $lim_{nto infty}Phi_nleft(frac{ n}{ln 2}right)=1=Phi_n(x_n)$.Thus for all $s>frac{1}{ln 2}$,since
begin{align*}
lim_{nto infty }Phi_n(s n)=frac{1}{e^{1/s}-1}>1=lim_{nto infty}Phi_n(x_n)
end{align*}
we see that there exists $N$,such that for all$ n>N$,
begin{align*}
Phi_n(s n)>Phi_n(x_n)Rightarrow sn>x_n,forall n>N
end{align*}
This implies $A=limlimits_{nto infty }y_nleqslant s$,thus $Aleqslant frac{1}{ln 2}$.Similarly we can prove $Ageqslant frac{1}{ln 2}$,and finally we get $A=frac{1}{ln 2}$.
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
add a comment |
up vote
2
down vote
up vote
2
down vote
Below is my thought of proving $limlimits_{nto infty}frac{x_n}{n}=frac{1}{ln 2}$.
For any $lambda >0$,
begin{align*}
Phi_n(lambda n)=sum_{k=1}^infty left( frac{lambda n}{lambda n+k}right)^n
end{align*}
We denote $a_{n,k}=left( frac{lambda n}{lambda n+k}right)^n$,it's easy to verify that $a_{n,k}$ is decreasing for $n$,and
begin{align*}
lim_{nto infty}a_{n,k}=e^{-k/lambda}triangleq b_k
end{align*}
We notice that $sum_{k=1}^infty b_k=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}$,$a_{n,k}<a_{2,k}$,$ngeq 2$,$sum a_{2,k}$is convergent.Meanwhile ,we can verify the following proposition(A similar to Lebesgue's dominated convergent theorem)
Suppose${a_{n,k}}$is a positive binary index sequence,and for all $kin mathbb{N}_+$we have
$a_{n,k}to b_k$,$ntoinfty$,besides $|a_{n,k}|<a_k$, $sum_{k=1}^infty a_k$ is convergent.Then
begin{align*}
lim_{nto infty}sum_{k=1}^infty a_{n,k}=sum_{k=1}^infty b_k
end{align*}
So thanks to the above proposition can see
begin{align*}
lim_{nto infty}Phi_n(lambda n)=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}
end{align*}
Specially,we take $lambda=frac{1}{ln 2}$,then $lim_{nto infty}Phi_nleft(frac{ n}{ln 2}right)=1=Phi_n(x_n)$.Thus for all $s>frac{1}{ln 2}$,since
begin{align*}
lim_{nto infty }Phi_n(s n)=frac{1}{e^{1/s}-1}>1=lim_{nto infty}Phi_n(x_n)
end{align*}
we see that there exists $N$,such that for all$ n>N$,
begin{align*}
Phi_n(s n)>Phi_n(x_n)Rightarrow sn>x_n,forall n>N
end{align*}
This implies $A=limlimits_{nto infty }y_nleqslant s$,thus $Aleqslant frac{1}{ln 2}$.Similarly we can prove $Ageqslant frac{1}{ln 2}$,and finally we get $A=frac{1}{ln 2}$.
Below is my thought of proving $limlimits_{nto infty}frac{x_n}{n}=frac{1}{ln 2}$.
For any $lambda >0$,
begin{align*}
Phi_n(lambda n)=sum_{k=1}^infty left( frac{lambda n}{lambda n+k}right)^n
end{align*}
We denote $a_{n,k}=left( frac{lambda n}{lambda n+k}right)^n$,it's easy to verify that $a_{n,k}$ is decreasing for $n$,and
begin{align*}
lim_{nto infty}a_{n,k}=e^{-k/lambda}triangleq b_k
end{align*}
We notice that $sum_{k=1}^infty b_k=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}$,$a_{n,k}<a_{2,k}$,$ngeq 2$,$sum a_{2,k}$is convergent.Meanwhile ,we can verify the following proposition(A similar to Lebesgue's dominated convergent theorem)
Suppose${a_{n,k}}$is a positive binary index sequence,and for all $kin mathbb{N}_+$we have
$a_{n,k}to b_k$,$ntoinfty$,besides $|a_{n,k}|<a_k$, $sum_{k=1}^infty a_k$ is convergent.Then
begin{align*}
lim_{nto infty}sum_{k=1}^infty a_{n,k}=sum_{k=1}^infty b_k
end{align*}
So thanks to the above proposition can see
begin{align*}
lim_{nto infty}Phi_n(lambda n)=sum_{k=1}^infty e^{-k/lambda}=frac{1}{e^{1/lambda}-1}
end{align*}
Specially,we take $lambda=frac{1}{ln 2}$,then $lim_{nto infty}Phi_nleft(frac{ n}{ln 2}right)=1=Phi_n(x_n)$.Thus for all $s>frac{1}{ln 2}$,since
begin{align*}
lim_{nto infty }Phi_n(s n)=frac{1}{e^{1/s}-1}>1=lim_{nto infty}Phi_n(x_n)
end{align*}
we see that there exists $N$,such that for all$ n>N$,
begin{align*}
Phi_n(s n)>Phi_n(x_n)Rightarrow sn>x_n,forall n>N
end{align*}
This implies $A=limlimits_{nto infty }y_nleqslant s$,thus $Aleqslant frac{1}{ln 2}$.Similarly we can prove $Ageqslant frac{1}{ln 2}$,and finally we get $A=frac{1}{ln 2}$.
edited Nov 9 at 9:04
answered Nov 9 at 8:42
mbfkk
331113
331113
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
add a comment |
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
(+1) good job, this settles the limit $A$ is $frac{1}{log 2}$. In fact, we no longer need to assume $A$ exists to get its value. For any $s > frac{1}{log 2}$, $y_n le s$ for sufficiently large $n$ implies $limsuplimits_{ntoinfty} y_n le s$. This in turn implies $limsuplimits_n y_n le inf s = frac{1}{log 2}$. Similarly, we have $frac{1}{log 2} le liminflimits_{ntoinfty} y_n$. Sim limsup = liminf, limit exists and equal to $frac{1}{log 2}$.
– achille hui
Nov 9 at 11:00
add a comment |
up vote
0
down vote
We can rewrite $$x^{-n} = sum_{k=1}^infty (x+k)^{-n}$$
as
$$1= sum_{k=1}^infty e^{- nln (1+ k/x_n)}.$$
Now
$ln (1+k/x_n) le k/x_n$, therefore
$$1 le sum_{k=1}^infty e^{-frac{n}{x_n}k} = frac{1}{e^{n/x_n}-1}.$$
From this it follows that
$$ (*) quad n /x_n ge ln 2.$$
Suppose now that $limsup_{ntoinfty} n/x_n=M>c$. Then for all $n$ large, we have $n/x_n>c$ and
begin{align*} 1 &= sum_{k=1}^infty e^{-n ln (1+frac{k}{n} times frac{n}{x_n})}\
& le sum_{k=1}^infty e^{-n ln (1+ frac{k}{n} c)}\
& = sum_{k=1}^infty (1+frac{k}{n}c)^{-n} \
& to sum_{k=1}^infty e^{-kc}=frac{1}{e^c-1}.
end{align*}
by dominated convergence (note: $(1+frac{k}{n}c)^{-n} le (1+frac{kc}{2})^{-2}$).
Thus, $e^c-1 le 1$, or $c le ln 2$. It follows that
$$(**) quad limsup n/x_n le ln 2.$$
Now $(*)$ and $(**)$ give
$$lim_{ntoinfty} frac{x_n}{n} = sup_{n} frac{x_n}{n} = frac{1}{ln 2}.$$
add a comment |
up vote
0
down vote
We can rewrite $$x^{-n} = sum_{k=1}^infty (x+k)^{-n}$$
as
$$1= sum_{k=1}^infty e^{- nln (1+ k/x_n)}.$$
Now
$ln (1+k/x_n) le k/x_n$, therefore
$$1 le sum_{k=1}^infty e^{-frac{n}{x_n}k} = frac{1}{e^{n/x_n}-1}.$$
From this it follows that
$$ (*) quad n /x_n ge ln 2.$$
Suppose now that $limsup_{ntoinfty} n/x_n=M>c$. Then for all $n$ large, we have $n/x_n>c$ and
begin{align*} 1 &= sum_{k=1}^infty e^{-n ln (1+frac{k}{n} times frac{n}{x_n})}\
& le sum_{k=1}^infty e^{-n ln (1+ frac{k}{n} c)}\
& = sum_{k=1}^infty (1+frac{k}{n}c)^{-n} \
& to sum_{k=1}^infty e^{-kc}=frac{1}{e^c-1}.
end{align*}
by dominated convergence (note: $(1+frac{k}{n}c)^{-n} le (1+frac{kc}{2})^{-2}$).
Thus, $e^c-1 le 1$, or $c le ln 2$. It follows that
$$(**) quad limsup n/x_n le ln 2.$$
Now $(*)$ and $(**)$ give
$$lim_{ntoinfty} frac{x_n}{n} = sup_{n} frac{x_n}{n} = frac{1}{ln 2}.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
We can rewrite $$x^{-n} = sum_{k=1}^infty (x+k)^{-n}$$
as
$$1= sum_{k=1}^infty e^{- nln (1+ k/x_n)}.$$
Now
$ln (1+k/x_n) le k/x_n$, therefore
$$1 le sum_{k=1}^infty e^{-frac{n}{x_n}k} = frac{1}{e^{n/x_n}-1}.$$
From this it follows that
$$ (*) quad n /x_n ge ln 2.$$
Suppose now that $limsup_{ntoinfty} n/x_n=M>c$. Then for all $n$ large, we have $n/x_n>c$ and
begin{align*} 1 &= sum_{k=1}^infty e^{-n ln (1+frac{k}{n} times frac{n}{x_n})}\
& le sum_{k=1}^infty e^{-n ln (1+ frac{k}{n} c)}\
& = sum_{k=1}^infty (1+frac{k}{n}c)^{-n} \
& to sum_{k=1}^infty e^{-kc}=frac{1}{e^c-1}.
end{align*}
by dominated convergence (note: $(1+frac{k}{n}c)^{-n} le (1+frac{kc}{2})^{-2}$).
Thus, $e^c-1 le 1$, or $c le ln 2$. It follows that
$$(**) quad limsup n/x_n le ln 2.$$
Now $(*)$ and $(**)$ give
$$lim_{ntoinfty} frac{x_n}{n} = sup_{n} frac{x_n}{n} = frac{1}{ln 2}.$$
We can rewrite $$x^{-n} = sum_{k=1}^infty (x+k)^{-n}$$
as
$$1= sum_{k=1}^infty e^{- nln (1+ k/x_n)}.$$
Now
$ln (1+k/x_n) le k/x_n$, therefore
$$1 le sum_{k=1}^infty e^{-frac{n}{x_n}k} = frac{1}{e^{n/x_n}-1}.$$
From this it follows that
$$ (*) quad n /x_n ge ln 2.$$
Suppose now that $limsup_{ntoinfty} n/x_n=M>c$. Then for all $n$ large, we have $n/x_n>c$ and
begin{align*} 1 &= sum_{k=1}^infty e^{-n ln (1+frac{k}{n} times frac{n}{x_n})}\
& le sum_{k=1}^infty e^{-n ln (1+ frac{k}{n} c)}\
& = sum_{k=1}^infty (1+frac{k}{n}c)^{-n} \
& to sum_{k=1}^infty e^{-kc}=frac{1}{e^c-1}.
end{align*}
by dominated convergence (note: $(1+frac{k}{n}c)^{-n} le (1+frac{kc}{2})^{-2}$).
Thus, $e^c-1 le 1$, or $c le ln 2$. It follows that
$$(**) quad limsup n/x_n le ln 2.$$
Now $(*)$ and $(**)$ give
$$lim_{ntoinfty} frac{x_n}{n} = sup_{n} frac{x_n}{n} = frac{1}{ln 2}.$$
answered Nov 14 at 2:40
Fnacool
4,891511
4,891511
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982897%2fhow-to-show-the-existence-of-the-limit-lim-n-to-infty-fracx-nn-if-x-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown