smooth map derivative along Euler vector field
$begingroup$
let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$
$f (tx, ty, tz) = t^p f (x, y, z)$
Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$
Find $E(f)$.
I don't know where to begin. Thank you
differential-geometry
$endgroup$
add a comment |
$begingroup$
let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$
$f (tx, ty, tz) = t^p f (x, y, z)$
Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$
Find $E(f)$.
I don't know where to begin. Thank you
differential-geometry
$endgroup$
add a comment |
$begingroup$
let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$
$f (tx, ty, tz) = t^p f (x, y, z)$
Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$
Find $E(f)$.
I don't know where to begin. Thank you
differential-geometry
$endgroup$
let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$
$f (tx, ty, tz) = t^p f (x, y, z)$
Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$
Find $E(f)$.
I don't know where to begin. Thank you
differential-geometry
differential-geometry
asked Dec 21 '18 at 16:08
PerelManPerelMan
661313
661313
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
$$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$
$endgroup$
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
add a comment |
$begingroup$
The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048651%2fsmooth-map-derivative-along-euler-vector-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
$$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$
$endgroup$
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
add a comment |
$begingroup$
Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
$$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$
$endgroup$
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
add a comment |
$begingroup$
Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
$$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$
$endgroup$
Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
$$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$
answered Dec 21 '18 at 16:11
SvanNSvanN
2,0661422
2,0661422
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
add a comment |
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
$begingroup$
Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
$endgroup$
– PerelMan
Dec 21 '18 at 16:36
add a comment |
$begingroup$
The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$
$endgroup$
add a comment |
$begingroup$
The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$
$endgroup$
add a comment |
$begingroup$
The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$
$endgroup$
The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$
answered Dec 21 '18 at 16:17
Tsemo AristideTsemo Aristide
59k11445
59k11445
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048651%2fsmooth-map-derivative-along-euler-vector-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown