smooth map derivative along Euler vector field












0












$begingroup$


let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$



$f (tx, ty, tz) = t^p f (x, y, z)$



Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$



Find $E(f)$.



I don't know where to begin. Thank you










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$



    $f (tx, ty, tz) = t^p f (x, y, z)$



    Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$



    Find $E(f)$.



    I don't know where to begin. Thank you










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$



      $f (tx, ty, tz) = t^p f (x, y, z)$



      Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$



      Find $E(f)$.



      I don't know where to begin. Thank you










      share|cite|improve this question









      $endgroup$




      let $p$ be a non zero integer. Let $U = mathbb{R}^3 setminus{0}$ and $f$ be a smooth map $f: Urightarrow mathbb{R}: forall (x, y, z) ∈ U , forall t>0:$



      $f (tx, ty, tz) = t^p f (x, y, z)$



      Let $E$ be Euler's field on $U: E=xpartial_x+ypartial_y+zpartial_z$



      Find $E(f)$.



      I don't know where to begin. Thank you







      differential-geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 21 '18 at 16:08









      PerelManPerelMan

      661313




      661313






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
          $$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
            $endgroup$
            – PerelMan
            Dec 21 '18 at 16:36



















          2












          $begingroup$

          The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048651%2fsmooth-map-derivative-along-euler-vector-field%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
            $$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
              $endgroup$
              – PerelMan
              Dec 21 '18 at 16:36
















            1












            $begingroup$

            Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
            $$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
              $endgroup$
              – PerelMan
              Dec 21 '18 at 16:36














            1












            1








            1





            $begingroup$

            Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
            $$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$






            share|cite|improve this answer









            $endgroup$



            Hint: notice that $E(f)$ is the same as the directional derivative of $f$ along the vector $(x,y,z)$. More precisely,
            $$ E(f)(x,y,z) = lim_{tto 0} frac{f(x+tx,y+ty,z+tz)-f(x,y,z)}{t}.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 21 '18 at 16:11









            SvanNSvanN

            2,0661422




            2,0661422












            • $begingroup$
              Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
              $endgroup$
              – PerelMan
              Dec 21 '18 at 16:36


















            • $begingroup$
              Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
              $endgroup$
              – PerelMan
              Dec 21 '18 at 16:36
















            $begingroup$
            Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
            $endgroup$
            – PerelMan
            Dec 21 '18 at 16:36




            $begingroup$
            Thank you! that would give $E(f)(x,y,z)= p.f(x,y,z)$
            $endgroup$
            – PerelMan
            Dec 21 '18 at 16:36











            2












            $begingroup$

            The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$






                share|cite|improve this answer









                $endgroup$



                The flow of $E$ is $phi_t(x,y,z)=(e^tx,e^ty,e^tz)$, $f(phi_t(x,y,z))=f(e^tx,e^ty,e^tz)=e^{pt}f(x,y,z)$ implies that=t $E(f)={dover{dt}}_{t=0}f(phi_t(x,y,z))={dover{dt}}_{t=0}e^{pt}f(x,y,z)=pf(x,y,z).$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 21 '18 at 16:17









                Tsemo AristideTsemo Aristide

                59k11445




                59k11445






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048651%2fsmooth-map-derivative-along-euler-vector-field%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Aardman Animations

                    Are they similar matrix

                    “minimization” problem in Euclidean space related to orthonormal basis