How to find $lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x}$ when $xto 0^+$ and when $xto 0^-$?
$begingroup$
I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$
Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.
If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$
Is this the same as $x to 0^+$?
If so, how do I approach the problem for $x to 0^-$?
If not, how do I do I do it from both sides?
calculus limits
$endgroup$
add a comment |
$begingroup$
I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$
Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.
If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$
Is this the same as $x to 0^+$?
If so, how do I approach the problem for $x to 0^-$?
If not, how do I do I do it from both sides?
calculus limits
$endgroup$
$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31
add a comment |
$begingroup$
I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$
Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.
If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$
Is this the same as $x to 0^+$?
If so, how do I approach the problem for $x to 0^-$?
If not, how do I do I do it from both sides?
calculus limits
$endgroup$
I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$
Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.
If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$
Is this the same as $x to 0^+$?
If so, how do I approach the problem for $x to 0^-$?
If not, how do I do I do it from both sides?
calculus limits
calculus limits
edited Feb 13 at 16:09
Asaf Karagila♦
306k33438769
306k33438769
asked Feb 13 at 10:25
user644361user644361
835
835
$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31
add a comment |
$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31
$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31
$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Note that your expression after factoring, becomes :
$$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$
This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :
$$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$
Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.
$endgroup$
add a comment |
$begingroup$
Note that the answer depends on the sign of $x$:
begin{align}
frac{sqrt{x^3+4x^2}} {x^2-x}
&=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
&=begin{cases}
-2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
end{cases}
end{align}
$endgroup$
add a comment |
$begingroup$
We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !
Now cosider two cases:
$x to 0^{+}$ and 2. $x to 0^{-}$.
$endgroup$
add a comment |
$begingroup$
Hint: if you factor, you get
$$frac{|x| sqrt{x+4}}{x(x-1)} $$
Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.
$endgroup$
add a comment |
$begingroup$
Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.
We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.
For $x>0$: $dfrac{|x|}{x}=1$;
For $x <0$ $dfrac{|x|}{x}=-1$;
Now proceed to take limits $x rightarrow 0^{pm}$.
$endgroup$
add a comment |
$begingroup$
Limit from right side is
$
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
= -2
$
Limit from left side is
$
lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
= 2
$
$
therefore
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3111220%2fhow-to-find-lim-limits-x-to-0-frac-sqrtx34x2-x2-x-when-x-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that your expression after factoring, becomes :
$$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$
This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :
$$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$
Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.
$endgroup$
add a comment |
$begingroup$
Note that your expression after factoring, becomes :
$$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$
This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :
$$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$
Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.
$endgroup$
add a comment |
$begingroup$
Note that your expression after factoring, becomes :
$$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$
This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :
$$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$
Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.
$endgroup$
Note that your expression after factoring, becomes :
$$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$
This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :
$$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$
Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.
answered Feb 13 at 10:32
RebellosRebellos
15.3k31250
15.3k31250
add a comment |
add a comment |
$begingroup$
Note that the answer depends on the sign of $x$:
begin{align}
frac{sqrt{x^3+4x^2}} {x^2-x}
&=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
&=begin{cases}
-2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
end{cases}
end{align}
$endgroup$
add a comment |
$begingroup$
Note that the answer depends on the sign of $x$:
begin{align}
frac{sqrt{x^3+4x^2}} {x^2-x}
&=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
&=begin{cases}
-2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
end{cases}
end{align}
$endgroup$
add a comment |
$begingroup$
Note that the answer depends on the sign of $x$:
begin{align}
frac{sqrt{x^3+4x^2}} {x^2-x}
&=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
&=begin{cases}
-2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
end{cases}
end{align}
$endgroup$
Note that the answer depends on the sign of $x$:
begin{align}
frac{sqrt{x^3+4x^2}} {x^2-x}
&=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
&=begin{cases}
-2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
end{cases}
end{align}
answered Feb 13 at 10:32
Fabio LucchiniFabio Lucchini
8,88311426
8,88311426
add a comment |
add a comment |
$begingroup$
We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !
Now cosider two cases:
$x to 0^{+}$ and 2. $x to 0^{-}$.
$endgroup$
add a comment |
$begingroup$
We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !
Now cosider two cases:
$x to 0^{+}$ and 2. $x to 0^{-}$.
$endgroup$
add a comment |
$begingroup$
We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !
Now cosider two cases:
$x to 0^{+}$ and 2. $x to 0^{-}$.
$endgroup$
We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !
Now cosider two cases:
$x to 0^{+}$ and 2. $x to 0^{-}$.
answered Feb 13 at 10:33
FredFred
48.3k1849
48.3k1849
add a comment |
add a comment |
$begingroup$
Hint: if you factor, you get
$$frac{|x| sqrt{x+4}}{x(x-1)} $$
Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.
$endgroup$
add a comment |
$begingroup$
Hint: if you factor, you get
$$frac{|x| sqrt{x+4}}{x(x-1)} $$
Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.
$endgroup$
add a comment |
$begingroup$
Hint: if you factor, you get
$$frac{|x| sqrt{x+4}}{x(x-1)} $$
Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.
$endgroup$
Hint: if you factor, you get
$$frac{|x| sqrt{x+4}}{x(x-1)} $$
Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.
answered Feb 13 at 10:33
HarnakHarnak
1,309512
1,309512
add a comment |
add a comment |
$begingroup$
Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.
We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.
For $x>0$: $dfrac{|x|}{x}=1$;
For $x <0$ $dfrac{|x|}{x}=-1$;
Now proceed to take limits $x rightarrow 0^{pm}$.
$endgroup$
add a comment |
$begingroup$
Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.
We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.
For $x>0$: $dfrac{|x|}{x}=1$;
For $x <0$ $dfrac{|x|}{x}=-1$;
Now proceed to take limits $x rightarrow 0^{pm}$.
$endgroup$
add a comment |
$begingroup$
Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.
We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.
For $x>0$: $dfrac{|x|}{x}=1$;
For $x <0$ $dfrac{|x|}{x}=-1$;
Now proceed to take limits $x rightarrow 0^{pm}$.
$endgroup$
Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.
We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.
For $x>0$: $dfrac{|x|}{x}=1$;
For $x <0$ $dfrac{|x|}{x}=-1$;
Now proceed to take limits $x rightarrow 0^{pm}$.
answered Feb 13 at 10:44
Peter SzilasPeter Szilas
11.5k2822
11.5k2822
add a comment |
add a comment |
$begingroup$
Limit from right side is
$
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
= -2
$
Limit from left side is
$
lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
= 2
$
$
therefore
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
$
$endgroup$
add a comment |
$begingroup$
Limit from right side is
$
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
= -2
$
Limit from left side is
$
lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
= 2
$
$
therefore
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
$
$endgroup$
add a comment |
$begingroup$
Limit from right side is
$
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
= -2
$
Limit from left side is
$
lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
= 2
$
$
therefore
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
$
$endgroup$
Limit from right side is
$
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
= -2
$
Limit from left side is
$
lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
= lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
= lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
= lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
= 2
$
$
therefore
lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
$
edited Feb 13 at 10:47
answered Feb 13 at 10:38
programmerprogrammer
856
856
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3111220%2fhow-to-find-lim-limits-x-to-0-frac-sqrtx34x2-x2-x-when-x-to-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31