How to find $lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x}$ when $xto 0^+$ and when $xto 0^-$?












9












$begingroup$


I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$



Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.





If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$



Is this the same as $x to 0^+$?



If so, how do I approach the problem for $x to 0^-$?



If not, how do I do I do it from both sides?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
    $endgroup$
    – Kavi Rama Murthy
    Feb 13 at 10:31


















9












$begingroup$


I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$



Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.





If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$



Is this the same as $x to 0^+$?



If so, how do I approach the problem for $x to 0^-$?



If not, how do I do I do it from both sides?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
    $endgroup$
    – Kavi Rama Murthy
    Feb 13 at 10:31
















9












9








9





$begingroup$


I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$



Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.





If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$



Is this the same as $x to 0^+$?



If so, how do I approach the problem for $x to 0^-$?



If not, how do I do I do it from both sides?










share|cite|improve this question











$endgroup$




I'm trying to find:
$$ lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} $$



Since there is a discontinuity at $x=0$ I know that I have to take the limits from both sides, $x to 0^+$ and $x to 0^-$, and check if they're equal.





If I factor it I get:
$$ lim limits_{x to 0} left(frac{sqrt{x+4}} {x-1}right) = - 2$$



Is this the same as $x to 0^+$?



If so, how do I approach the problem for $x to 0^-$?



If not, how do I do I do it from both sides?







calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 13 at 16:09









Asaf Karagila

306k33438769




306k33438769










asked Feb 13 at 10:25









user644361user644361

835




835












  • $begingroup$
    For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
    $endgroup$
    – Kavi Rama Murthy
    Feb 13 at 10:31




















  • $begingroup$
    For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
    $endgroup$
    – Kavi Rama Murthy
    Feb 13 at 10:31


















$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31






$begingroup$
For $x to 0^{-}$ the limit is $2$. Put $y=-x$ and take limit as $ y to 0^{+}$
$endgroup$
– Kavi Rama Murthy
Feb 13 at 10:31












6 Answers
6






active

oldest

votes


















13












$begingroup$

Note that your expression after factoring, becomes :



$$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$



This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :



$$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$



Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Note that the answer depends on the sign of $x$:
    begin{align}
    frac{sqrt{x^3+4x^2}} {x^2-x}
    &=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
    &=begin{cases}
    -2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
    2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
    end{cases}
    end{align}






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !



      Now cosider two cases:





      1. $x to 0^{+}$ and 2. $x to 0^{-}$.






      share|cite|improve this answer









      $endgroup$





















        2












        $begingroup$

        Hint: if you factor, you get
        $$frac{|x| sqrt{x+4}}{x(x-1)} $$
        Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.






        share|cite|improve this answer









        $endgroup$





















          2












          $begingroup$

          Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.



          We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.



          For $x>0$: $dfrac{|x|}{x}=1$;



          For $x <0$ $dfrac{|x|}{x}=-1$;



          Now proceed to take limits $x rightarrow 0^{pm}$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Limit from right side is



            $
            lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
            = lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
            = lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
            = lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
            = -2
            $



            Limit from left side is



            $
            lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
            = lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
            = lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
            = lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
            = 2
            $



            $
            therefore
            lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
            neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
            Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
            $






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3111220%2fhow-to-find-lim-limits-x-to-0-frac-sqrtx34x2-x2-x-when-x-to-0%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              6 Answers
              6






              active

              oldest

              votes








              6 Answers
              6






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              13












              $begingroup$

              Note that your expression after factoring, becomes :



              $$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$



              This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :



              $$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$



              Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.






              share|cite|improve this answer









              $endgroup$


















                13












                $begingroup$

                Note that your expression after factoring, becomes :



                $$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$



                This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :



                $$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$



                Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.






                share|cite|improve this answer









                $endgroup$
















                  13












                  13








                  13





                  $begingroup$

                  Note that your expression after factoring, becomes :



                  $$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$



                  This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :



                  $$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$



                  Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.






                  share|cite|improve this answer









                  $endgroup$



                  Note that your expression after factoring, becomes :



                  $$frac{sqrt{x^3 + 4x^2}}{x^2-x} = frac{sqrt{x^2(x+4)}}{x(x-1)} = frac{|x|sqrt{x+4}}{x(x-1)}$$



                  This is exactly where your mistake is. When you factor under the square root, $x^2$ becomes $|x|$. That means, by definition of the absolute value, that :



                  $$|x| = begin{cases} x &xgeq 0 \-x &x<0 end{cases}$$



                  Eventually, the left sided limit will be $2$ and the right sided $-2$, which means that the total limit does not exist.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 13 at 10:32









                  RebellosRebellos

                  15.3k31250




                  15.3k31250























                      2












                      $begingroup$

                      Note that the answer depends on the sign of $x$:
                      begin{align}
                      frac{sqrt{x^3+4x^2}} {x^2-x}
                      &=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
                      &=begin{cases}
                      -2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
                      2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
                      end{cases}
                      end{align}






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Note that the answer depends on the sign of $x$:
                        begin{align}
                        frac{sqrt{x^3+4x^2}} {x^2-x}
                        &=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
                        &=begin{cases}
                        -2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
                        2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
                        end{cases}
                        end{align}






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Note that the answer depends on the sign of $x$:
                          begin{align}
                          frac{sqrt{x^3+4x^2}} {x^2-x}
                          &=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
                          &=begin{cases}
                          -2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
                          2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
                          end{cases}
                          end{align}






                          share|cite|improve this answer









                          $endgroup$



                          Note that the answer depends on the sign of $x$:
                          begin{align}
                          frac{sqrt{x^3+4x^2}} {x^2-x}
                          &=frac{2|x|sqrt{1+frac x4}}{-x(1-x)}\
                          &=begin{cases}
                          -2frac{sqrt{1+x/4}}{1-x}&xto 0^+\
                          2frac{sqrt{1+x/4}}{1-x}&xto 0^-\
                          end{cases}
                          end{align}







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Feb 13 at 10:32









                          Fabio LucchiniFabio Lucchini

                          8,88311426




                          8,88311426























                              2












                              $begingroup$

                              We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !



                              Now cosider two cases:





                              1. $x to 0^{+}$ and 2. $x to 0^{-}$.






                              share|cite|improve this answer









                              $endgroup$


















                                2












                                $begingroup$

                                We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !



                                Now cosider two cases:





                                1. $x to 0^{+}$ and 2. $x to 0^{-}$.






                                share|cite|improve this answer









                                $endgroup$
















                                  2












                                  2








                                  2





                                  $begingroup$

                                  We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !



                                  Now cosider two cases:





                                  1. $x to 0^{+}$ and 2. $x to 0^{-}$.






                                  share|cite|improve this answer









                                  $endgroup$



                                  We have $sqrt{x^3+4x^2}=sqrt{x^2(x+4)}=|x|sqrt{x+4}$ !



                                  Now cosider two cases:





                                  1. $x to 0^{+}$ and 2. $x to 0^{-}$.







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered Feb 13 at 10:33









                                  FredFred

                                  48.3k1849




                                  48.3k1849























                                      2












                                      $begingroup$

                                      Hint: if you factor, you get
                                      $$frac{|x| sqrt{x+4}}{x(x-1)} $$
                                      Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.






                                      share|cite|improve this answer









                                      $endgroup$


















                                        2












                                        $begingroup$

                                        Hint: if you factor, you get
                                        $$frac{|x| sqrt{x+4}}{x(x-1)} $$
                                        Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.






                                        share|cite|improve this answer









                                        $endgroup$
















                                          2












                                          2








                                          2





                                          $begingroup$

                                          Hint: if you factor, you get
                                          $$frac{|x| sqrt{x+4}}{x(x-1)} $$
                                          Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.






                                          share|cite|improve this answer









                                          $endgroup$



                                          Hint: if you factor, you get
                                          $$frac{|x| sqrt{x+4}}{x(x-1)} $$
                                          Consider that $|x|/x = 1$ if $x > 0$ and $|x| / x = -1$ if $x <0$.







                                          share|cite|improve this answer












                                          share|cite|improve this answer



                                          share|cite|improve this answer










                                          answered Feb 13 at 10:33









                                          HarnakHarnak

                                          1,309512




                                          1,309512























                                              2












                                              $begingroup$

                                              Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.



                                              We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.



                                              For $x>0$: $dfrac{|x|}{x}=1$;



                                              For $x <0$ $dfrac{|x|}{x}=-1$;



                                              Now proceed to take limits $x rightarrow 0^{pm}$.






                                              share|cite|improve this answer









                                              $endgroup$


















                                                2












                                                $begingroup$

                                                Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.



                                                We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.



                                                For $x>0$: $dfrac{|x|}{x}=1$;



                                                For $x <0$ $dfrac{|x|}{x}=-1$;



                                                Now proceed to take limits $x rightarrow 0^{pm}$.






                                                share|cite|improve this answer









                                                $endgroup$
















                                                  2












                                                  2








                                                  2





                                                  $begingroup$

                                                  Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.



                                                  We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.



                                                  For $x>0$: $dfrac{|x|}{x}=1$;



                                                  For $x <0$ $dfrac{|x|}{x}=-1$;



                                                  Now proceed to take limits $x rightarrow 0^{pm}$.






                                                  share|cite|improve this answer









                                                  $endgroup$



                                                  Note : $ sqrt{x^3+4x^2}=|x|sqrt{x+4}$.



                                                  We have $dfrac{|x|sqrt{x+4}}{x(x-1)}$.



                                                  For $x>0$: $dfrac{|x|}{x}=1$;



                                                  For $x <0$ $dfrac{|x|}{x}=-1$;



                                                  Now proceed to take limits $x rightarrow 0^{pm}$.







                                                  share|cite|improve this answer












                                                  share|cite|improve this answer



                                                  share|cite|improve this answer










                                                  answered Feb 13 at 10:44









                                                  Peter SzilasPeter Szilas

                                                  11.5k2822




                                                  11.5k2822























                                                      2












                                                      $begingroup$

                                                      Limit from right side is



                                                      $
                                                      lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                      = lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                      = lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
                                                      = lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
                                                      = -2
                                                      $



                                                      Limit from left side is



                                                      $
                                                      lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                      = lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                      = lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
                                                      = lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
                                                      = 2
                                                      $



                                                      $
                                                      therefore
                                                      lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
                                                      neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                      Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
                                                      $






                                                      share|cite|improve this answer











                                                      $endgroup$


















                                                        2












                                                        $begingroup$

                                                        Limit from right side is



                                                        $
                                                        lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                        = lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                        = lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
                                                        = lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
                                                        = -2
                                                        $



                                                        Limit from left side is



                                                        $
                                                        lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                        = lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                        = lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
                                                        = lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
                                                        = 2
                                                        $



                                                        $
                                                        therefore
                                                        lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
                                                        neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                        Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
                                                        $






                                                        share|cite|improve this answer











                                                        $endgroup$
















                                                          2












                                                          2








                                                          2





                                                          $begingroup$

                                                          Limit from right side is



                                                          $
                                                          lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                          = lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                          = lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
                                                          = lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
                                                          = -2
                                                          $



                                                          Limit from left side is



                                                          $
                                                          lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                          = lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                          = lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
                                                          = lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
                                                          = 2
                                                          $



                                                          $
                                                          therefore
                                                          lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
                                                          neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                          Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
                                                          $






                                                          share|cite|improve this answer











                                                          $endgroup$



                                                          Limit from right side is



                                                          $
                                                          lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                          = lim limits_{x to 0^+} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                          = lim limits_{delta to 0} left(frac{ |0+delta| sqrt{ (0+delta) +4}}{ (0+delta)( (0+delta) -1 ) }right) [ text{substituting} x = 0 + delta , delta > 0 ] \
                                                          = lim limits_{delta to 0} left(frac{ delta sqrt{ delta+4}}{ delta (delta-1) }right) \
                                                          = -2
                                                          $



                                                          Limit from left side is



                                                          $
                                                          lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                          = lim limits_{x to 0^-} left(frac{ |x| sqrt{x+4}} { x(x-1) }right) \
                                                          = lim limits_{delta to 0} left(frac{ |0-delta| sqrt{ (0-delta) +4}}{ (0-delta)( (0-delta) -1 ) }right) [ text{substituting} x = 0 - delta , delta > 0 ] \
                                                          = lim limits_{delta to 0} left(frac{ -delta sqrt{ 4 - delta }}{ delta (-1 - delta) }right) \
                                                          = 2
                                                          $



                                                          $
                                                          therefore
                                                          lim limits_{x to 0^+} frac{sqrt{x^3+4x^2}} {x^2-x}
                                                          neq lim limits_{x to 0^-} frac{sqrt{x^3+4x^2}} {x^2-x} \
                                                          Rightarrow lim limits_{x to 0} frac{sqrt{x^3+4x^2}} {x^2-x} text{does not exist}
                                                          $







                                                          share|cite|improve this answer














                                                          share|cite|improve this answer



                                                          share|cite|improve this answer








                                                          edited Feb 13 at 10:47

























                                                          answered Feb 13 at 10:38









                                                          programmerprogrammer

                                                          856




                                                          856






























                                                              draft saved

                                                              draft discarded




















































                                                              Thanks for contributing an answer to Mathematics Stack Exchange!


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid



                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.


                                                              Use MathJax to format equations. MathJax reference.


                                                              To learn more, see our tips on writing great answers.




                                                              draft saved


                                                              draft discarded














                                                              StackExchange.ready(
                                                              function () {
                                                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3111220%2fhow-to-find-lim-limits-x-to-0-frac-sqrtx34x2-x2-x-when-x-to-0%23new-answer', 'question_page');
                                                              }
                                                              );

                                                              Post as a guest















                                                              Required, but never shown





















































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown

































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown







                                                              Popular posts from this blog

                                                              Probability when a professor distributes a quiz and homework assignment to a class of n students.

                                                              Aardman Animations

                                                              Are they similar matrix