extract Catalan numbers from generating function via residues
$begingroup$
Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:
$$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$
I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.
I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$
for some appropriately chosen $C$.
integration combinatorics complex-analysis generating-functions
$endgroup$
add a comment |
$begingroup$
Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:
$$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$
I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.
I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$
for some appropriately chosen $C$.
integration combinatorics complex-analysis generating-functions
$endgroup$
add a comment |
$begingroup$
Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:
$$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$
I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.
I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$
for some appropriately chosen $C$.
integration combinatorics complex-analysis generating-functions
$endgroup$
Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:
$$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$
I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.
I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$
for some appropriately chosen $C$.
integration combinatorics complex-analysis generating-functions
integration combinatorics complex-analysis generating-functions
edited Dec 25 '18 at 21:16
Larry
2,53031131
2,53031131
asked Dec 25 '18 at 20:07
CCCCCC
37018
37018
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The solution could have been much shorter, but I prefer details to concision.
One wants to show that
$$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$
It is easy to see
$$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$
Definitions
We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
$$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$
I will show how to evaluate
$$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.
Decomposing the contour integral
Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.
The two integrals, one around branch point and one along the infinitely large circle, vanish.
The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)
$$begin{align}
I^+
&=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
end{align}
$$
The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
$$begin{align}
I^-
&=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
end{align}
$$
Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.
Evaluating $I_n$ directly
By the substitution $u=frac1{1+4t}$,
$$begin{align}
frac1{-4i}I_n
&=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
&=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
&=2^{2n+1}Bleft(frac32,n+frac12right)\
&=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
&=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
&=picdotfrac1{n+1}binom{2n}{n}\
I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
end{align}
$$
Assembling
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
$$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$
Thus,
$$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.
$endgroup$
add a comment |
$begingroup$
With the functional equation
$$C(z) = 1 + z C(z)^2$$
and the solution
$$C(z) = frac{1-sqrt{1-4z}}{2z}$$
we may choose the branch cut of the square root to be $(1/4, +infty)$
so that we have an analytic function in the neighborhood of the
origin and the Cauchy Coefficient Formula applies.
We have
$$n C_n = [z^{n-1}] C'(z) =
frac{1}{2pi i}
int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$
With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
so that
$$n C_n =
frac{1}{2pi i}
int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
\ = frac{1}{2pi i}
int_{|w-1|=gamma} frac{1}{(w-1)^n}
sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
\ = {2nchoose n-1}.$$
We thus have
$$C_n = frac{1}{n} {2nchoose n-1}
= frac{1}{n+1} {2nchoose n}$$
as required. This was for $nge 1$ and we see that this last formula
also yields the correct value for $n=0.$ Here we have made use of the
fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
$|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
single turn. The chosen branch cut in fact corresponds to the
principal branch of the logarithm with argument $(-pi, pi].$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052399%2fextract-catalan-numbers-from-generating-function-via-residues%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The solution could have been much shorter, but I prefer details to concision.
One wants to show that
$$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$
It is easy to see
$$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$
Definitions
We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
$$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$
I will show how to evaluate
$$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.
Decomposing the contour integral
Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.
The two integrals, one around branch point and one along the infinitely large circle, vanish.
The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)
$$begin{align}
I^+
&=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
end{align}
$$
The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
$$begin{align}
I^-
&=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
end{align}
$$
Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.
Evaluating $I_n$ directly
By the substitution $u=frac1{1+4t}$,
$$begin{align}
frac1{-4i}I_n
&=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
&=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
&=2^{2n+1}Bleft(frac32,n+frac12right)\
&=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
&=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
&=picdotfrac1{n+1}binom{2n}{n}\
I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
end{align}
$$
Assembling
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
$$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$
Thus,
$$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.
$endgroup$
add a comment |
$begingroup$
The solution could have been much shorter, but I prefer details to concision.
One wants to show that
$$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$
It is easy to see
$$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$
Definitions
We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
$$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$
I will show how to evaluate
$$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.
Decomposing the contour integral
Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.
The two integrals, one around branch point and one along the infinitely large circle, vanish.
The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)
$$begin{align}
I^+
&=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
end{align}
$$
The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
$$begin{align}
I^-
&=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
end{align}
$$
Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.
Evaluating $I_n$ directly
By the substitution $u=frac1{1+4t}$,
$$begin{align}
frac1{-4i}I_n
&=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
&=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
&=2^{2n+1}Bleft(frac32,n+frac12right)\
&=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
&=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
&=picdotfrac1{n+1}binom{2n}{n}\
I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
end{align}
$$
Assembling
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
$$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$
Thus,
$$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.
$endgroup$
add a comment |
$begingroup$
The solution could have been much shorter, but I prefer details to concision.
One wants to show that
$$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$
It is easy to see
$$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$
Definitions
We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
$$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$
I will show how to evaluate
$$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.
Decomposing the contour integral
Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.
The two integrals, one around branch point and one along the infinitely large circle, vanish.
The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)
$$begin{align}
I^+
&=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
end{align}
$$
The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
$$begin{align}
I^-
&=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
end{align}
$$
Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.
Evaluating $I_n$ directly
By the substitution $u=frac1{1+4t}$,
$$begin{align}
frac1{-4i}I_n
&=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
&=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
&=2^{2n+1}Bleft(frac32,n+frac12right)\
&=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
&=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
&=picdotfrac1{n+1}binom{2n}{n}\
I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
end{align}
$$
Assembling
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
$$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$
Thus,
$$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.
$endgroup$
The solution could have been much shorter, but I prefer details to concision.
One wants to show that
$$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$
It is easy to see
$$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$
Definitions
We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
$$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$
I will show how to evaluate
$$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.
Decomposing the contour integral
Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.
The two integrals, one around branch point and one along the infinitely large circle, vanish.
The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)
$$begin{align}
I^+
&=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
end{align}
$$
The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
$$begin{align}
I^-
&=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
&=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
&=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
end{align}
$$
Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.
Evaluating $I_n$ directly
By the substitution $u=frac1{1+4t}$,
$$begin{align}
frac1{-4i}I_n
&=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
&=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
&=2^{2n+1}Bleft(frac32,n+frac12right)\
&=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
&=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
&=picdotfrac1{n+1}binom{2n}{n}\
I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
end{align}
$$
Assembling
$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
$$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$
Thus,
$$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.
edited Dec 26 '18 at 14:20
answered Dec 26 '18 at 8:12
SzetoSzeto
6,6512926
6,6512926
add a comment |
add a comment |
$begingroup$
With the functional equation
$$C(z) = 1 + z C(z)^2$$
and the solution
$$C(z) = frac{1-sqrt{1-4z}}{2z}$$
we may choose the branch cut of the square root to be $(1/4, +infty)$
so that we have an analytic function in the neighborhood of the
origin and the Cauchy Coefficient Formula applies.
We have
$$n C_n = [z^{n-1}] C'(z) =
frac{1}{2pi i}
int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$
With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
so that
$$n C_n =
frac{1}{2pi i}
int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
\ = frac{1}{2pi i}
int_{|w-1|=gamma} frac{1}{(w-1)^n}
sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
\ = {2nchoose n-1}.$$
We thus have
$$C_n = frac{1}{n} {2nchoose n-1}
= frac{1}{n+1} {2nchoose n}$$
as required. This was for $nge 1$ and we see that this last formula
also yields the correct value for $n=0.$ Here we have made use of the
fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
$|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
single turn. The chosen branch cut in fact corresponds to the
principal branch of the logarithm with argument $(-pi, pi].$
$endgroup$
add a comment |
$begingroup$
With the functional equation
$$C(z) = 1 + z C(z)^2$$
and the solution
$$C(z) = frac{1-sqrt{1-4z}}{2z}$$
we may choose the branch cut of the square root to be $(1/4, +infty)$
so that we have an analytic function in the neighborhood of the
origin and the Cauchy Coefficient Formula applies.
We have
$$n C_n = [z^{n-1}] C'(z) =
frac{1}{2pi i}
int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$
With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
so that
$$n C_n =
frac{1}{2pi i}
int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
\ = frac{1}{2pi i}
int_{|w-1|=gamma} frac{1}{(w-1)^n}
sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
\ = {2nchoose n-1}.$$
We thus have
$$C_n = frac{1}{n} {2nchoose n-1}
= frac{1}{n+1} {2nchoose n}$$
as required. This was for $nge 1$ and we see that this last formula
also yields the correct value for $n=0.$ Here we have made use of the
fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
$|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
single turn. The chosen branch cut in fact corresponds to the
principal branch of the logarithm with argument $(-pi, pi].$
$endgroup$
add a comment |
$begingroup$
With the functional equation
$$C(z) = 1 + z C(z)^2$$
and the solution
$$C(z) = frac{1-sqrt{1-4z}}{2z}$$
we may choose the branch cut of the square root to be $(1/4, +infty)$
so that we have an analytic function in the neighborhood of the
origin and the Cauchy Coefficient Formula applies.
We have
$$n C_n = [z^{n-1}] C'(z) =
frac{1}{2pi i}
int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$
With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
so that
$$n C_n =
frac{1}{2pi i}
int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
\ = frac{1}{2pi i}
int_{|w-1|=gamma} frac{1}{(w-1)^n}
sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
\ = {2nchoose n-1}.$$
We thus have
$$C_n = frac{1}{n} {2nchoose n-1}
= frac{1}{n+1} {2nchoose n}$$
as required. This was for $nge 1$ and we see that this last formula
also yields the correct value for $n=0.$ Here we have made use of the
fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
$|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
single turn. The chosen branch cut in fact corresponds to the
principal branch of the logarithm with argument $(-pi, pi].$
$endgroup$
With the functional equation
$$C(z) = 1 + z C(z)^2$$
and the solution
$$C(z) = frac{1-sqrt{1-4z}}{2z}$$
we may choose the branch cut of the square root to be $(1/4, +infty)$
so that we have an analytic function in the neighborhood of the
origin and the Cauchy Coefficient Formula applies.
We have
$$n C_n = [z^{n-1}] C'(z) =
frac{1}{2pi i}
int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$
With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
so that
$$n C_n =
frac{1}{2pi i}
int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
\ = frac{1}{2pi i}
int_{|w-1|=gamma} frac{1}{(w-1)^n}
sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
\ = {2nchoose n-1}.$$
We thus have
$$C_n = frac{1}{n} {2nchoose n-1}
= frac{1}{n+1} {2nchoose n}$$
as required. This was for $nge 1$ and we see that this last formula
also yields the correct value for $n=0.$ Here we have made use of the
fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
$|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
single turn. The chosen branch cut in fact corresponds to the
principal branch of the logarithm with argument $(-pi, pi].$
answered Dec 26 '18 at 15:35
Marko RiedelMarko Riedel
40.7k339110
40.7k339110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052399%2fextract-catalan-numbers-from-generating-function-via-residues%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown