extract Catalan numbers from generating function via residues












9












$begingroup$


Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:



$$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$



I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.



I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral



$$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$



for some appropriately chosen $C$.










share|cite|improve this question











$endgroup$

















    9












    $begingroup$


    Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:



    $$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$



    I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.



    I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral



    $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$



    for some appropriately chosen $C$.










    share|cite|improve this question











    $endgroup$















      9












      9








      9


      4



      $begingroup$


      Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:



      $$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$



      I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.



      I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral



      $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$



      for some appropriately chosen $C$.










      share|cite|improve this question











      $endgroup$




      Consider the catalan numbers $C_n=frac{1}{n+1}binom{2n}{n}$, which have the following generating function:



      $$C(x)=sum_{n=0}^{infty}C_nx^n=frac{1-sqrt{1-4x}}{2x}.$$



      I am well aware of the usual proofs of this identity: for example, one can write $C(x)$ as the root of a quadratic equation via combinatorial identities, or one can Taylor-expand $sqrt{1-4x}$.



      I am wondering if there is a way to start from $C(x)=frac{1-sqrt{1-4x}}{2x}$ and extract the Taylor coefficients via residue calculus. That is, if there is a direct way to evaluate the integral



      $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+1}}dz$$



      for some appropriately chosen $C$.







      integration combinatorics complex-analysis generating-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 25 '18 at 21:16









      Larry

      2,53031131




      2,53031131










      asked Dec 25 '18 at 20:07









      CCCCCC

      37018




      37018






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          The solution could have been much shorter, but I prefer details to concision.



          One wants to show that
          $$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$



          It is easy to see
          $$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$





          Definitions



          We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
          $$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$



          I will show how to evaluate



          $$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.





          Decomposing the contour integral



          Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.



          The two integrals, one around branch point and one along the infinitely large circle, vanish.



          The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)



          $$begin{align}
          I^+
          &=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
          &=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
          &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
          end{align}
          $$



          The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
          $$begin{align}
          I^-
          &=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
          &=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
          &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
          end{align}
          $$



          Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.





          Evaluating $I_n$ directly



          By the substitution $u=frac1{1+4t}$,
          $$begin{align}
          frac1{-4i}I_n
          &=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
          &=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
          &=2^{2n+1}Bleft(frac32,n+frac12right)\
          &=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
          &=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
          &=picdotfrac1{n+1}binom{2n}{n}\
          I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
          end{align}
          $$





          Assembling



          $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
          $$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$



          Thus,
          $$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            With the functional equation



            $$C(z) = 1 + z C(z)^2$$



            and the solution



            $$C(z) = frac{1-sqrt{1-4z}}{2z}$$



            we may choose the branch cut of the square root to be $(1/4, +infty)$
            so that we have an analytic function in the neighborhood of the
            origin and the Cauchy Coefficient Formula applies.



            We have



            $$n C_n = [z^{n-1}] C'(z) =
            frac{1}{2pi i}
            int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$



            With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
            so that



            $$n C_n =
            frac{1}{2pi i}
            int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
            \ = frac{1}{2pi i}
            int_{|w-1|=gamma} frac{1}{(w-1)^n}
            sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
            \ = {2nchoose n-1}.$$



            We thus have



            $$C_n = frac{1}{n} {2nchoose n-1}
            = frac{1}{n+1} {2nchoose n}$$



            as required. This was for $nge 1$ and we see that this last formula
            also yields the correct value for $n=0.$ Here we have made use of the
            fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
            $|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
            single turn. The chosen branch cut in fact corresponds to the
            principal branch of the logarithm with argument $(-pi, pi].$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052399%2fextract-catalan-numbers-from-generating-function-via-residues%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              The solution could have been much shorter, but I prefer details to concision.



              One wants to show that
              $$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$



              It is easy to see
              $$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$





              Definitions



              We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
              $$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$



              I will show how to evaluate



              $$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.





              Decomposing the contour integral



              Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.



              The two integrals, one around branch point and one along the infinitely large circle, vanish.



              The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)



              $$begin{align}
              I^+
              &=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
              &=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
              &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
              end{align}
              $$



              The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
              $$begin{align}
              I^-
              &=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
              &=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
              &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
              end{align}
              $$



              Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.





              Evaluating $I_n$ directly



              By the substitution $u=frac1{1+4t}$,
              $$begin{align}
              frac1{-4i}I_n
              &=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
              &=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
              &=2^{2n+1}Bleft(frac32,n+frac12right)\
              &=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
              &=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
              &=picdotfrac1{n+1}binom{2n}{n}\
              I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
              end{align}
              $$





              Assembling



              $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
              $$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$



              Thus,
              $$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.






              share|cite|improve this answer











              $endgroup$


















                6












                $begingroup$

                The solution could have been much shorter, but I prefer details to concision.



                One wants to show that
                $$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$



                It is easy to see
                $$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$





                Definitions



                We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
                $$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$



                I will show how to evaluate



                $$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.





                Decomposing the contour integral



                Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.



                The two integrals, one around branch point and one along the infinitely large circle, vanish.



                The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)



                $$begin{align}
                I^+
                &=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
                &=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
                &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
                end{align}
                $$



                The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
                $$begin{align}
                I^-
                &=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
                &=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
                &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
                end{align}
                $$



                Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.





                Evaluating $I_n$ directly



                By the substitution $u=frac1{1+4t}$,
                $$begin{align}
                frac1{-4i}I_n
                &=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
                &=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
                &=2^{2n+1}Bleft(frac32,n+frac12right)\
                &=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
                &=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
                &=picdotfrac1{n+1}binom{2n}{n}\
                I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
                end{align}
                $$





                Assembling



                $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
                $$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$



                Thus,
                $$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.






                share|cite|improve this answer











                $endgroup$
















                  6












                  6








                  6





                  $begingroup$

                  The solution could have been much shorter, but I prefer details to concision.



                  One wants to show that
                  $$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$



                  It is easy to see
                  $$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$





                  Definitions



                  We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
                  $$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$



                  I will show how to evaluate



                  $$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.





                  Decomposing the contour integral



                  Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.



                  The two integrals, one around branch point and one along the infinitely large circle, vanish.



                  The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)



                  $$begin{align}
                  I^+
                  &=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
                  &=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
                  &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
                  end{align}
                  $$



                  The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
                  $$begin{align}
                  I^-
                  &=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
                  &=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
                  &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
                  end{align}
                  $$



                  Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.





                  Evaluating $I_n$ directly



                  By the substitution $u=frac1{1+4t}$,
                  $$begin{align}
                  frac1{-4i}I_n
                  &=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
                  &=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
                  &=2^{2n+1}Bleft(frac32,n+frac12right)\
                  &=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
                  &=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
                  &=picdotfrac1{n+1}binom{2n}{n}\
                  I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
                  end{align}
                  $$





                  Assembling



                  $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
                  $$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$



                  Thus,
                  $$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.






                  share|cite|improve this answer











                  $endgroup$



                  The solution could have been much shorter, but I prefer details to concision.



                  One wants to show that
                  $$C_n=frac1{2pi i}oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}$$



                  It is easy to see
                  $$oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz$$





                  Definitions



                  We will take the branch cut of $sqrt{1-4z}$ on $mathbb R_{ge1/4}$, i.e.
                  $$sqrt{1-4z}=expbigg[frac{ln|1-4z|+iarg(1-4z)}2bigg]qquad{arg(1-4z)in[-pi,pi)}$$



                  I will show how to evaluate



                  $$I_n:=oint_Csqrt{1-4z}~~ z^{-n-2}dz$$ directly.





                  Decomposing the contour integral



                  Take $C$ to be the keyhole contour centered at $1/4$ which avoids the branch cut.



                  The two integrals, one around branch point and one along the infinitely large circle, vanish.



                  The integral above the real axis $I^+$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato0^+$)



                  $$begin{align}
                  I^+
                  &=lim_{thetato0^+}int^infty_0frac{sqrt{1-4(1/4+te^{itheta})}} {(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
                  &=int^infty_0frac{lim_{thetato0^+}sqrt{4te^{i(theta-pi)}}} {(1/4+t)^{n+2}}dt \
                  &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
                  end{align}
                  $$



                  The integral below the real axis $I^-$ is (using the parametrization $z=frac14+te^{itheta}$, under the limit $thetato2pi^-$)
                  $$begin{align}
                  I^-
                  &=lim_{thetato2pi^-}int_infty^0frac{sqrt{1-4(1/4+te^{itheta})}}{(1/4+te^{itheta})^{n+2}}e^{itheta}dt \
                  &=int_infty^0frac{lim_{thetato2pi^-}sqrt{4te^{i(theta-pi)}}}{(1/4+t)^{n+2}}dt \
                  &=-2iint^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt=I^+
                  end{align}
                  $$



                  Therefore, $I_nequiv I^+ + I^-=2I^+=-4idisplaystyle{int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt}$.





                  Evaluating $I_n$ directly



                  By the substitution $u=frac1{1+4t}$,
                  $$begin{align}
                  frac1{-4i}I_n
                  &=int^infty_0frac{sqrt{t}}{(1/4+t)^{n+2}}dt \
                  &=2^{2n+1}int^1_0sqrt{1-u}~~u^{n-1/2}du \
                  &=2^{2n+1}Bleft(frac32,n+frac12right)\
                  &=2^{2n+1}cdotGamma(3/2)cdotGamma(n+1/2)cdotfrac1{Gamma(n+2)}\
                  &=2^{2n+1}cdotfrac{sqrtpi}{2}cdotfrac{(2n)!}{2^{2n}n!}sqrtpicdotfrac1{n+1}frac1{n!}\
                  &=picdotfrac1{n+1}binom{2n}{n}\
                  I_n&=frac{-4pi i}{n+1}binom{2n}{n}\
                  end{align}
                  $$





                  Assembling



                  $$oint_{C}frac{1-sqrt{1-4z}}{2z^{n+2}}dz=-frac12oint_{C}frac{sqrt{1-4z}}{z^{n+2}}dz=-frac12I_n$$
                  $$=-frac12cdotfrac{-4pi i}{n+1}binom{2n}{n}=2pi ifrac1{n+1}binom{2n}{n}$$



                  Thus,
                  $$color{red}{oint_{C}frac{1-sqrt{1-4z}}{2z}frac{dz}{z^{n+1}}=2pi i~C_n}$$ as expected.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 26 '18 at 14:20

























                  answered Dec 26 '18 at 8:12









                  SzetoSzeto

                  6,6512926




                  6,6512926























                      1












                      $begingroup$

                      With the functional equation



                      $$C(z) = 1 + z C(z)^2$$



                      and the solution



                      $$C(z) = frac{1-sqrt{1-4z}}{2z}$$



                      we may choose the branch cut of the square root to be $(1/4, +infty)$
                      so that we have an analytic function in the neighborhood of the
                      origin and the Cauchy Coefficient Formula applies.



                      We have



                      $$n C_n = [z^{n-1}] C'(z) =
                      frac{1}{2pi i}
                      int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$



                      With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
                      so that



                      $$n C_n =
                      frac{1}{2pi i}
                      int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
                      \ = frac{1}{2pi i}
                      int_{|w-1|=gamma} frac{1}{(w-1)^n}
                      sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
                      \ = {2nchoose n-1}.$$



                      We thus have



                      $$C_n = frac{1}{n} {2nchoose n-1}
                      = frac{1}{n+1} {2nchoose n}$$



                      as required. This was for $nge 1$ and we see that this last formula
                      also yields the correct value for $n=0.$ Here we have made use of the
                      fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
                      $|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
                      single turn. The chosen branch cut in fact corresponds to the
                      principal branch of the logarithm with argument $(-pi, pi].$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        With the functional equation



                        $$C(z) = 1 + z C(z)^2$$



                        and the solution



                        $$C(z) = frac{1-sqrt{1-4z}}{2z}$$



                        we may choose the branch cut of the square root to be $(1/4, +infty)$
                        so that we have an analytic function in the neighborhood of the
                        origin and the Cauchy Coefficient Formula applies.



                        We have



                        $$n C_n = [z^{n-1}] C'(z) =
                        frac{1}{2pi i}
                        int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$



                        With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
                        so that



                        $$n C_n =
                        frac{1}{2pi i}
                        int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
                        \ = frac{1}{2pi i}
                        int_{|w-1|=gamma} frac{1}{(w-1)^n}
                        sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
                        \ = {2nchoose n-1}.$$



                        We thus have



                        $$C_n = frac{1}{n} {2nchoose n-1}
                        = frac{1}{n+1} {2nchoose n}$$



                        as required. This was for $nge 1$ and we see that this last formula
                        also yields the correct value for $n=0.$ Here we have made use of the
                        fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
                        $|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
                        single turn. The chosen branch cut in fact corresponds to the
                        principal branch of the logarithm with argument $(-pi, pi].$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          With the functional equation



                          $$C(z) = 1 + z C(z)^2$$



                          and the solution



                          $$C(z) = frac{1-sqrt{1-4z}}{2z}$$



                          we may choose the branch cut of the square root to be $(1/4, +infty)$
                          so that we have an analytic function in the neighborhood of the
                          origin and the Cauchy Coefficient Formula applies.



                          We have



                          $$n C_n = [z^{n-1}] C'(z) =
                          frac{1}{2pi i}
                          int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$



                          With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
                          so that



                          $$n C_n =
                          frac{1}{2pi i}
                          int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
                          \ = frac{1}{2pi i}
                          int_{|w-1|=gamma} frac{1}{(w-1)^n}
                          sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
                          \ = {2nchoose n-1}.$$



                          We thus have



                          $$C_n = frac{1}{n} {2nchoose n-1}
                          = frac{1}{n+1} {2nchoose n}$$



                          as required. This was for $nge 1$ and we see that this last formula
                          also yields the correct value for $n=0.$ Here we have made use of the
                          fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
                          $|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
                          single turn. The chosen branch cut in fact corresponds to the
                          principal branch of the logarithm with argument $(-pi, pi].$






                          share|cite|improve this answer









                          $endgroup$



                          With the functional equation



                          $$C(z) = 1 + z C(z)^2$$



                          and the solution



                          $$C(z) = frac{1-sqrt{1-4z}}{2z}$$



                          we may choose the branch cut of the square root to be $(1/4, +infty)$
                          so that we have an analytic function in the neighborhood of the
                          origin and the Cauchy Coefficient Formula applies.



                          We have



                          $$n C_n = [z^{n-1}] C'(z) =
                          frac{1}{2pi i}
                          int_{|z|=epsilon} frac{1}{z^n} C'(z) ; dz.$$



                          With the substitution $C(z) = w$ we get that $z = (w-1)/w^2$
                          so that



                          $$n C_n =
                          frac{1}{2pi i}
                          int_{|w-1|=gamma} frac{w^{2n}}{(w-1)^n} ; dw
                          \ = frac{1}{2pi i}
                          int_{|w-1|=gamma} frac{1}{(w-1)^n}
                          sum_{q=0}^{2n} {2nchoose q} (w-1)^q ; dw
                          \ = {2nchoose n-1}.$$



                          We thus have



                          $$C_n = frac{1}{n} {2nchoose n-1}
                          = frac{1}{n+1} {2nchoose n}$$



                          as required. This was for $nge 1$ and we see that this last formula
                          also yields the correct value for $n=0.$ Here we have made use of the
                          fact that $C(z) = 1 + z + cdots$ so the image contour of the circle
                          $|z|=epsilon$ can be deformed to a circle $|w-1|=gamma$ making a
                          single turn. The chosen branch cut in fact corresponds to the
                          principal branch of the logarithm with argument $(-pi, pi].$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 26 '18 at 15:35









                          Marko RiedelMarko Riedel

                          40.7k339110




                          40.7k339110






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052399%2fextract-catalan-numbers-from-generating-function-via-residues%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Probability when a professor distributes a quiz and homework assignment to a class of n students.

                              Aardman Animations

                              Are they similar matrix