Suppose $f:Bbb{R}rightarrowBbb{R}$ is continuous. Define $G(x)=int_0^x(x-t)f(t)dt$ for all $xinBbb{R}$. Prove...












4












$begingroup$


This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.



$underline{Proof}$



$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.



So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,



$G(x)=xQ(x)-P(x)$



$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$



hence,



$G''(x)=Q'(x)=f(x)$












share|cite|improve this question









$endgroup$












  • $begingroup$
    Looks fine. You can also use the Leibniz integral rule.
    $endgroup$
    – Mattos
    Dec 6 '18 at 6:15












  • $begingroup$
    @Mattos, thank you I will also try this problem with Leibniz for practise
    $endgroup$
    – Albert Diaz
    Dec 6 '18 at 6:22
















4












$begingroup$


This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.



$underline{Proof}$



$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.



So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,



$G(x)=xQ(x)-P(x)$



$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$



hence,



$G''(x)=Q'(x)=f(x)$












share|cite|improve this question









$endgroup$












  • $begingroup$
    Looks fine. You can also use the Leibniz integral rule.
    $endgroup$
    – Mattos
    Dec 6 '18 at 6:15












  • $begingroup$
    @Mattos, thank you I will also try this problem with Leibniz for practise
    $endgroup$
    – Albert Diaz
    Dec 6 '18 at 6:22














4












4








4





$begingroup$


This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.



$underline{Proof}$



$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.



So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,



$G(x)=xQ(x)-P(x)$



$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$



hence,



$G''(x)=Q'(x)=f(x)$












share|cite|improve this question









$endgroup$




This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.



$underline{Proof}$



$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.



So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,



$G(x)=xQ(x)-P(x)$



$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$



hence,



$G''(x)=Q'(x)=f(x)$









real-analysis calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 6 '18 at 6:12









Albert DiazAlbert Diaz

925




925












  • $begingroup$
    Looks fine. You can also use the Leibniz integral rule.
    $endgroup$
    – Mattos
    Dec 6 '18 at 6:15












  • $begingroup$
    @Mattos, thank you I will also try this problem with Leibniz for practise
    $endgroup$
    – Albert Diaz
    Dec 6 '18 at 6:22


















  • $begingroup$
    Looks fine. You can also use the Leibniz integral rule.
    $endgroup$
    – Mattos
    Dec 6 '18 at 6:15












  • $begingroup$
    @Mattos, thank you I will also try this problem with Leibniz for practise
    $endgroup$
    – Albert Diaz
    Dec 6 '18 at 6:22
















$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15






$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15














$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22




$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22










1 Answer
1






active

oldest

votes


















0












$begingroup$

Your proof is correct. An alternative is to use integration by parts. With
$$
f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
$$

we have
$$
G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
int_0^x f_1(t) , dt = f_2(x)
$$

and therefore $G'' = f_2'' = f_1' = f$.



This generalizes to higher anti-derivatives:
$$
int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
= int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
$$

for $n ge 1$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028118%2fsuppose-f-bbbr-rightarrow-bbbr-is-continuous-define-gx-int-0xx-tf%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Your proof is correct. An alternative is to use integration by parts. With
    $$
    f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
    $$

    we have
    $$
    G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
    int_0^x f_1(t) , dt = f_2(x)
    $$

    and therefore $G'' = f_2'' = f_1' = f$.



    This generalizes to higher anti-derivatives:
    $$
    int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
    = int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
    $$

    for $n ge 1$.






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Your proof is correct. An alternative is to use integration by parts. With
      $$
      f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
      $$

      we have
      $$
      G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
      int_0^x f_1(t) , dt = f_2(x)
      $$

      and therefore $G'' = f_2'' = f_1' = f$.



      This generalizes to higher anti-derivatives:
      $$
      int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
      = int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
      $$

      for $n ge 1$.






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Your proof is correct. An alternative is to use integration by parts. With
        $$
        f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
        $$

        we have
        $$
        G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
        int_0^x f_1(t) , dt = f_2(x)
        $$

        and therefore $G'' = f_2'' = f_1' = f$.



        This generalizes to higher anti-derivatives:
        $$
        int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
        = int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
        $$

        for $n ge 1$.






        share|cite|improve this answer











        $endgroup$



        Your proof is correct. An alternative is to use integration by parts. With
        $$
        f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
        $$

        we have
        $$
        G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
        int_0^x f_1(t) , dt = f_2(x)
        $$

        and therefore $G'' = f_2'' = f_1' = f$.



        This generalizes to higher anti-derivatives:
        $$
        int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
        = int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
        $$

        for $n ge 1$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 6 '18 at 7:37

























        answered Dec 6 '18 at 6:53









        Martin RMartin R

        27.9k33255




        27.9k33255






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028118%2fsuppose-f-bbbr-rightarrow-bbbr-is-continuous-define-gx-int-0xx-tf%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            When does type information flow backwards in C++?

            Grease: Live!