Suppose $f:Bbb{R}rightarrowBbb{R}$ is continuous. Define $G(x)=int_0^x(x-t)f(t)dt$ for all $xinBbb{R}$. Prove...
$begingroup$
This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.
$underline{Proof}$
$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.
So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,
$G(x)=xQ(x)-P(x)$
$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$
hence,
$G''(x)=Q'(x)=f(x)$
∎
real-analysis calculus
$endgroup$
add a comment |
$begingroup$
This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.
$underline{Proof}$
$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.
So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,
$G(x)=xQ(x)-P(x)$
$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$
hence,
$G''(x)=Q'(x)=f(x)$
∎
real-analysis calculus
$endgroup$
$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15
$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22
add a comment |
$begingroup$
This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.
$underline{Proof}$
$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.
So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,
$G(x)=xQ(x)-P(x)$
$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$
hence,
$G''(x)=Q'(x)=f(x)$
∎
real-analysis calculus
$endgroup$
This is a tricky example of the Fundamental Theorem of Calculus 1. I am looking for confirmation of my proof or answer to see if I am doing it correctly because this is different than the basic applications.
$underline{Proof}$
$G(x)=int_0^x(x-t)f(t)dtrightarrow G(x)=int_0^xxf(t)dt-int_0^xtf(t)dt$.
So, let $Q(x)=int_0^xf(t)dt$ and let $P(x)=int_0^xtf(t)dt$ then we have,
$G(x)=xQ(x)-P(x)$
$G'(x)=xQ'(x)+Q(x)-P'(x)=xf(x)+Q(x)-xf(x)=Q(x)$
hence,
$G''(x)=Q'(x)=f(x)$
∎
real-analysis calculus
real-analysis calculus
asked Dec 6 '18 at 6:12
Albert DiazAlbert Diaz
925
925
$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15
$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22
add a comment |
$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15
$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22
$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15
$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15
$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22
$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your proof is correct. An alternative is to use integration by parts. With
$$
f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
$$
we have
$$
G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
int_0^x f_1(t) , dt = f_2(x)
$$
and therefore $G'' = f_2'' = f_1' = f$.
This generalizes to higher anti-derivatives:
$$
int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
= int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
$$
for $n ge 1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028118%2fsuppose-f-bbbr-rightarrow-bbbr-is-continuous-define-gx-int-0xx-tf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your proof is correct. An alternative is to use integration by parts. With
$$
f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
$$
we have
$$
G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
int_0^x f_1(t) , dt = f_2(x)
$$
and therefore $G'' = f_2'' = f_1' = f$.
This generalizes to higher anti-derivatives:
$$
int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
= int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
$$
for $n ge 1$.
$endgroup$
add a comment |
$begingroup$
Your proof is correct. An alternative is to use integration by parts. With
$$
f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
$$
we have
$$
G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
int_0^x f_1(t) , dt = f_2(x)
$$
and therefore $G'' = f_2'' = f_1' = f$.
This generalizes to higher anti-derivatives:
$$
int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
= int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
$$
for $n ge 1$.
$endgroup$
add a comment |
$begingroup$
Your proof is correct. An alternative is to use integration by parts. With
$$
f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
$$
we have
$$
G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
int_0^x f_1(t) , dt = f_2(x)
$$
and therefore $G'' = f_2'' = f_1' = f$.
This generalizes to higher anti-derivatives:
$$
int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
= int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
$$
for $n ge 1$.
$endgroup$
Your proof is correct. An alternative is to use integration by parts. With
$$
f_1(x) = int_0^x f(t) , dt , , quad f_2(x) = int_0^x f_1(t) , dt
$$
we have
$$
G(x) = bigllbrack (x-t)f_1(t) bigrrbrack_{t=0}^{t=x} +
int_0^x f_1(t) , dt = f_2(x)
$$
and therefore $G'' = f_2'' = f_1' = f$.
This generalizes to higher anti-derivatives:
$$
int_0^x frac{(x-t)^{n-1}}{(n-1)!} f(t) , dt
= int_0^x int_0^{t_1} cdots int_0^{t_{n-1}} f(t_n) , dt_n cdots dt_1
$$
for $n ge 1$.
edited Dec 6 '18 at 7:37
answered Dec 6 '18 at 6:53
Martin RMartin R
27.9k33255
27.9k33255
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028118%2fsuppose-f-bbbr-rightarrow-bbbr-is-continuous-define-gx-int-0xx-tf%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Looks fine. You can also use the Leibniz integral rule.
$endgroup$
– Mattos
Dec 6 '18 at 6:15
$begingroup$
@Mattos, thank you I will also try this problem with Leibniz for practise
$endgroup$
– Albert Diaz
Dec 6 '18 at 6:22