The exponential of a skew-symmetric matrix in any dimension.
$begingroup$
The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?
matrices matrix-exponential
$endgroup$
add a comment |
$begingroup$
The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?
matrices matrix-exponential
$endgroup$
add a comment |
$begingroup$
The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?
matrices matrix-exponential
$endgroup$
The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?
matrices matrix-exponential
matrices matrix-exponential
edited Jan 9 at 11:04
quadrupleslap
asked Jan 9 at 10:35
quadrupleslapquadrupleslap
134
134
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
begin{align*}
Q=begin{bmatrix}
0 & lambda_1 & \
-lambda_1 & 0 & \
& & 0 & lambda_2\
& & -lambda_2 &0\
& & & & ddots\
& & & & & 0 & lambda_r\
& & & & & -lambda_r & 0\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}
end{align*}
where I don't put all the $0$s for visibility's sake.
The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
begin{align*}
e^A = sum_{n=0}^infty frac{1}{n!} A^n
end{align*}
and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
begin{align*}
Q^{2k} &= begin{bmatrix}
(-1)^klambda_1^{2k} & & \
& (-1)^klambda_1^{2k} & \
& & (-1)^klambda_2^{2k} & \
& & & (-1)^klambda_2^{2k}\
& & & & ddots\
& & & & & (-1)^klambda_r^{2k}\
& & & & & & (-1)^klambda_r^{2k}\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}\
Q^{2k+1} &=begin{bmatrix}
0 & (-1)^klambda_1^{2k+1} & \
-(-1)^klambda_1^{2k+1} & 0 & \
& & ddots\
& & & 0 & (-1)^klambda_r^{2k+1}\
& & & -(-1)^klambda_r^{2k+1} & 0\
& & & & & 0\
& & & & & &ddots\
& & & & & & & 0
end{bmatrix}
end{align*}
For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.
We had
begin{align*}
e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
&= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
&= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
end{align*}
and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
begin{align*}
e^A = U e^Q U^dagger
end{align*}
with
begin{align*}
e^Q = begin{bmatrix}
cos(lambda_1) & sin(lambda_1) & \
-sin(lambda_1) & cos(lambda_1) & \
& & cos(lambda_2) & sin(lambda_2)\
& & -sin(lambda_2) &cos(lambda_2)\
& & & & ddots\
& & & & & cos(lambda_r) & sin(lambda_r)\
& & & & & -sin(lambda_r) & cos(lambda_r)\
& & & & & & & 1\
& & & & & & & &ddots\
& & & & & & & & & 1
end{bmatrix}
end{align*}
So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.
$endgroup$
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067307%2fthe-exponential-of-a-skew-symmetric-matrix-in-any-dimension%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
begin{align*}
Q=begin{bmatrix}
0 & lambda_1 & \
-lambda_1 & 0 & \
& & 0 & lambda_2\
& & -lambda_2 &0\
& & & & ddots\
& & & & & 0 & lambda_r\
& & & & & -lambda_r & 0\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}
end{align*}
where I don't put all the $0$s for visibility's sake.
The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
begin{align*}
e^A = sum_{n=0}^infty frac{1}{n!} A^n
end{align*}
and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
begin{align*}
Q^{2k} &= begin{bmatrix}
(-1)^klambda_1^{2k} & & \
& (-1)^klambda_1^{2k} & \
& & (-1)^klambda_2^{2k} & \
& & & (-1)^klambda_2^{2k}\
& & & & ddots\
& & & & & (-1)^klambda_r^{2k}\
& & & & & & (-1)^klambda_r^{2k}\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}\
Q^{2k+1} &=begin{bmatrix}
0 & (-1)^klambda_1^{2k+1} & \
-(-1)^klambda_1^{2k+1} & 0 & \
& & ddots\
& & & 0 & (-1)^klambda_r^{2k+1}\
& & & -(-1)^klambda_r^{2k+1} & 0\
& & & & & 0\
& & & & & &ddots\
& & & & & & & 0
end{bmatrix}
end{align*}
For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.
We had
begin{align*}
e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
&= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
&= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
end{align*}
and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
begin{align*}
e^A = U e^Q U^dagger
end{align*}
with
begin{align*}
e^Q = begin{bmatrix}
cos(lambda_1) & sin(lambda_1) & \
-sin(lambda_1) & cos(lambda_1) & \
& & cos(lambda_2) & sin(lambda_2)\
& & -sin(lambda_2) &cos(lambda_2)\
& & & & ddots\
& & & & & cos(lambda_r) & sin(lambda_r)\
& & & & & -sin(lambda_r) & cos(lambda_r)\
& & & & & & & 1\
& & & & & & & &ddots\
& & & & & & & & & 1
end{bmatrix}
end{align*}
So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.
$endgroup$
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
add a comment |
$begingroup$
The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
begin{align*}
Q=begin{bmatrix}
0 & lambda_1 & \
-lambda_1 & 0 & \
& & 0 & lambda_2\
& & -lambda_2 &0\
& & & & ddots\
& & & & & 0 & lambda_r\
& & & & & -lambda_r & 0\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}
end{align*}
where I don't put all the $0$s for visibility's sake.
The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
begin{align*}
e^A = sum_{n=0}^infty frac{1}{n!} A^n
end{align*}
and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
begin{align*}
Q^{2k} &= begin{bmatrix}
(-1)^klambda_1^{2k} & & \
& (-1)^klambda_1^{2k} & \
& & (-1)^klambda_2^{2k} & \
& & & (-1)^klambda_2^{2k}\
& & & & ddots\
& & & & & (-1)^klambda_r^{2k}\
& & & & & & (-1)^klambda_r^{2k}\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}\
Q^{2k+1} &=begin{bmatrix}
0 & (-1)^klambda_1^{2k+1} & \
-(-1)^klambda_1^{2k+1} & 0 & \
& & ddots\
& & & 0 & (-1)^klambda_r^{2k+1}\
& & & -(-1)^klambda_r^{2k+1} & 0\
& & & & & 0\
& & & & & &ddots\
& & & & & & & 0
end{bmatrix}
end{align*}
For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.
We had
begin{align*}
e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
&= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
&= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
end{align*}
and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
begin{align*}
e^A = U e^Q U^dagger
end{align*}
with
begin{align*}
e^Q = begin{bmatrix}
cos(lambda_1) & sin(lambda_1) & \
-sin(lambda_1) & cos(lambda_1) & \
& & cos(lambda_2) & sin(lambda_2)\
& & -sin(lambda_2) &cos(lambda_2)\
& & & & ddots\
& & & & & cos(lambda_r) & sin(lambda_r)\
& & & & & -sin(lambda_r) & cos(lambda_r)\
& & & & & & & 1\
& & & & & & & &ddots\
& & & & & & & & & 1
end{bmatrix}
end{align*}
So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.
$endgroup$
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
add a comment |
$begingroup$
The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
begin{align*}
Q=begin{bmatrix}
0 & lambda_1 & \
-lambda_1 & 0 & \
& & 0 & lambda_2\
& & -lambda_2 &0\
& & & & ddots\
& & & & & 0 & lambda_r\
& & & & & -lambda_r & 0\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}
end{align*}
where I don't put all the $0$s for visibility's sake.
The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
begin{align*}
e^A = sum_{n=0}^infty frac{1}{n!} A^n
end{align*}
and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
begin{align*}
Q^{2k} &= begin{bmatrix}
(-1)^klambda_1^{2k} & & \
& (-1)^klambda_1^{2k} & \
& & (-1)^klambda_2^{2k} & \
& & & (-1)^klambda_2^{2k}\
& & & & ddots\
& & & & & (-1)^klambda_r^{2k}\
& & & & & & (-1)^klambda_r^{2k}\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}\
Q^{2k+1} &=begin{bmatrix}
0 & (-1)^klambda_1^{2k+1} & \
-(-1)^klambda_1^{2k+1} & 0 & \
& & ddots\
& & & 0 & (-1)^klambda_r^{2k+1}\
& & & -(-1)^klambda_r^{2k+1} & 0\
& & & & & 0\
& & & & & &ddots\
& & & & & & & 0
end{bmatrix}
end{align*}
For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.
We had
begin{align*}
e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
&= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
&= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
end{align*}
and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
begin{align*}
e^A = U e^Q U^dagger
end{align*}
with
begin{align*}
e^Q = begin{bmatrix}
cos(lambda_1) & sin(lambda_1) & \
-sin(lambda_1) & cos(lambda_1) & \
& & cos(lambda_2) & sin(lambda_2)\
& & -sin(lambda_2) &cos(lambda_2)\
& & & & ddots\
& & & & & cos(lambda_r) & sin(lambda_r)\
& & & & & -sin(lambda_r) & cos(lambda_r)\
& & & & & & & 1\
& & & & & & & &ddots\
& & & & & & & & & 1
end{bmatrix}
end{align*}
So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.
$endgroup$
The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
begin{align*}
Q=begin{bmatrix}
0 & lambda_1 & \
-lambda_1 & 0 & \
& & 0 & lambda_2\
& & -lambda_2 &0\
& & & & ddots\
& & & & & 0 & lambda_r\
& & & & & -lambda_r & 0\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}
end{align*}
where I don't put all the $0$s for visibility's sake.
The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
begin{align*}
e^A = sum_{n=0}^infty frac{1}{n!} A^n
end{align*}
and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
begin{align*}
Q^{2k} &= begin{bmatrix}
(-1)^klambda_1^{2k} & & \
& (-1)^klambda_1^{2k} & \
& & (-1)^klambda_2^{2k} & \
& & & (-1)^klambda_2^{2k}\
& & & & ddots\
& & & & & (-1)^klambda_r^{2k}\
& & & & & & (-1)^klambda_r^{2k}\
& & & & & & & 0\
& & & & & & & &ddots\
& & & & & & & & & 0
end{bmatrix}\
Q^{2k+1} &=begin{bmatrix}
0 & (-1)^klambda_1^{2k+1} & \
-(-1)^klambda_1^{2k+1} & 0 & \
& & ddots\
& & & 0 & (-1)^klambda_r^{2k+1}\
& & & -(-1)^klambda_r^{2k+1} & 0\
& & & & & 0\
& & & & & &ddots\
& & & & & & & 0
end{bmatrix}
end{align*}
For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.
We had
begin{align*}
e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
&= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
&= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
end{align*}
and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
begin{align*}
e^A = U e^Q U^dagger
end{align*}
with
begin{align*}
e^Q = begin{bmatrix}
cos(lambda_1) & sin(lambda_1) & \
-sin(lambda_1) & cos(lambda_1) & \
& & cos(lambda_2) & sin(lambda_2)\
& & -sin(lambda_2) &cos(lambda_2)\
& & & & ddots\
& & & & & cos(lambda_r) & sin(lambda_r)\
& & & & & -sin(lambda_r) & cos(lambda_r)\
& & & & & & & 1\
& & & & & & & &ddots\
& & & & & & & & & 1
end{bmatrix}
end{align*}
So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.
edited Jan 10 at 12:41
answered Jan 9 at 12:31
P. QuintonP. Quinton
2,0001214
2,0001214
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
add a comment |
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
put ones in the southeast corner of $e^Q$.
$endgroup$
– loup blanc
Jan 10 at 11:04
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
@loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
$endgroup$
– P. Quinton
Jan 10 at 12:42
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
$begingroup$
Indeed I confirm.
$endgroup$
– loup blanc
Jan 10 at 12:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067307%2fthe-exponential-of-a-skew-symmetric-matrix-in-any-dimension%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown