The exponential of a skew-symmetric matrix in any dimension.












1












$begingroup$


The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?










      share|cite|improve this question











      $endgroup$




      The Rodrigues rotation formula gives the exponential of a skew-symmetric matrix in three dimensions, and the exponential of a skew-symmetric matrix in two dimensions is given by Euler's formula. Is there a general formula (or set of formulas) for the exponential of a skew-symmetric matrix in any dimension?







      matrices matrix-exponential






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 9 at 11:04







      quadrupleslap

















      asked Jan 9 at 10:35









      quadrupleslapquadrupleslap

      134




      134






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
          begin{align*}
          Q=begin{bmatrix}
          0 & lambda_1 & \
          -lambda_1 & 0 & \
          & & 0 & lambda_2\
          & & -lambda_2 &0\
          & & & & ddots\
          & & & & & 0 & lambda_r\
          & & & & & -lambda_r & 0\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}
          end{align*}

          where I don't put all the $0$s for visibility's sake.



          The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
          begin{align*}
          e^A = sum_{n=0}^infty frac{1}{n!} A^n
          end{align*}



          and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
          begin{align*}
          Q^{2k} &= begin{bmatrix}
          (-1)^klambda_1^{2k} & & \
          & (-1)^klambda_1^{2k} & \
          & & (-1)^klambda_2^{2k} & \
          & & & (-1)^klambda_2^{2k}\
          & & & & ddots\
          & & & & & (-1)^klambda_r^{2k}\
          & & & & & & (-1)^klambda_r^{2k}\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}\
          Q^{2k+1} &=begin{bmatrix}
          0 & (-1)^klambda_1^{2k+1} & \
          -(-1)^klambda_1^{2k+1} & 0 & \
          & & ddots\
          & & & 0 & (-1)^klambda_r^{2k+1}\
          & & & -(-1)^klambda_r^{2k+1} & 0\
          & & & & & 0\
          & & & & & &ddots\
          & & & & & & & 0
          end{bmatrix}
          end{align*}

          For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.



          We had
          begin{align*}
          e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
          &= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
          &= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
          end{align*}

          and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
          begin{align*}
          e^A = U e^Q U^dagger
          end{align*}

          with
          begin{align*}
          e^Q = begin{bmatrix}
          cos(lambda_1) & sin(lambda_1) & \
          -sin(lambda_1) & cos(lambda_1) & \
          & & cos(lambda_2) & sin(lambda_2)\
          & & -sin(lambda_2) &cos(lambda_2)\
          & & & & ddots\
          & & & & & cos(lambda_r) & sin(lambda_r)\
          & & & & & -sin(lambda_r) & cos(lambda_r)\
          & & & & & & & 1\
          & & & & & & & &ddots\
          & & & & & & & & & 1
          end{bmatrix}
          end{align*}



          So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            put ones in the southeast corner of $e^Q$.
            $endgroup$
            – loup blanc
            Jan 10 at 11:04










          • $begingroup$
            @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
            $endgroup$
            – P. Quinton
            Jan 10 at 12:42










          • $begingroup$
            Indeed I confirm.
            $endgroup$
            – loup blanc
            Jan 10 at 12:44












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067307%2fthe-exponential-of-a-skew-symmetric-matrix-in-any-dimension%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
          begin{align*}
          Q=begin{bmatrix}
          0 & lambda_1 & \
          -lambda_1 & 0 & \
          & & 0 & lambda_2\
          & & -lambda_2 &0\
          & & & & ddots\
          & & & & & 0 & lambda_r\
          & & & & & -lambda_r & 0\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}
          end{align*}

          where I don't put all the $0$s for visibility's sake.



          The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
          begin{align*}
          e^A = sum_{n=0}^infty frac{1}{n!} A^n
          end{align*}



          and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
          begin{align*}
          Q^{2k} &= begin{bmatrix}
          (-1)^klambda_1^{2k} & & \
          & (-1)^klambda_1^{2k} & \
          & & (-1)^klambda_2^{2k} & \
          & & & (-1)^klambda_2^{2k}\
          & & & & ddots\
          & & & & & (-1)^klambda_r^{2k}\
          & & & & & & (-1)^klambda_r^{2k}\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}\
          Q^{2k+1} &=begin{bmatrix}
          0 & (-1)^klambda_1^{2k+1} & \
          -(-1)^klambda_1^{2k+1} & 0 & \
          & & ddots\
          & & & 0 & (-1)^klambda_r^{2k+1}\
          & & & -(-1)^klambda_r^{2k+1} & 0\
          & & & & & 0\
          & & & & & &ddots\
          & & & & & & & 0
          end{bmatrix}
          end{align*}

          For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.



          We had
          begin{align*}
          e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
          &= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
          &= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
          end{align*}

          and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
          begin{align*}
          e^A = U e^Q U^dagger
          end{align*}

          with
          begin{align*}
          e^Q = begin{bmatrix}
          cos(lambda_1) & sin(lambda_1) & \
          -sin(lambda_1) & cos(lambda_1) & \
          & & cos(lambda_2) & sin(lambda_2)\
          & & -sin(lambda_2) &cos(lambda_2)\
          & & & & ddots\
          & & & & & cos(lambda_r) & sin(lambda_r)\
          & & & & & -sin(lambda_r) & cos(lambda_r)\
          & & & & & & & 1\
          & & & & & & & &ddots\
          & & & & & & & & & 1
          end{bmatrix}
          end{align*}



          So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            put ones in the southeast corner of $e^Q$.
            $endgroup$
            – loup blanc
            Jan 10 at 11:04










          • $begingroup$
            @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
            $endgroup$
            – P. Quinton
            Jan 10 at 12:42










          • $begingroup$
            Indeed I confirm.
            $endgroup$
            – loup blanc
            Jan 10 at 12:44
















          0












          $begingroup$

          The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
          begin{align*}
          Q=begin{bmatrix}
          0 & lambda_1 & \
          -lambda_1 & 0 & \
          & & 0 & lambda_2\
          & & -lambda_2 &0\
          & & & & ddots\
          & & & & & 0 & lambda_r\
          & & & & & -lambda_r & 0\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}
          end{align*}

          where I don't put all the $0$s for visibility's sake.



          The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
          begin{align*}
          e^A = sum_{n=0}^infty frac{1}{n!} A^n
          end{align*}



          and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
          begin{align*}
          Q^{2k} &= begin{bmatrix}
          (-1)^klambda_1^{2k} & & \
          & (-1)^klambda_1^{2k} & \
          & & (-1)^klambda_2^{2k} & \
          & & & (-1)^klambda_2^{2k}\
          & & & & ddots\
          & & & & & (-1)^klambda_r^{2k}\
          & & & & & & (-1)^klambda_r^{2k}\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}\
          Q^{2k+1} &=begin{bmatrix}
          0 & (-1)^klambda_1^{2k+1} & \
          -(-1)^klambda_1^{2k+1} & 0 & \
          & & ddots\
          & & & 0 & (-1)^klambda_r^{2k+1}\
          & & & -(-1)^klambda_r^{2k+1} & 0\
          & & & & & 0\
          & & & & & &ddots\
          & & & & & & & 0
          end{bmatrix}
          end{align*}

          For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.



          We had
          begin{align*}
          e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
          &= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
          &= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
          end{align*}

          and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
          begin{align*}
          e^A = U e^Q U^dagger
          end{align*}

          with
          begin{align*}
          e^Q = begin{bmatrix}
          cos(lambda_1) & sin(lambda_1) & \
          -sin(lambda_1) & cos(lambda_1) & \
          & & cos(lambda_2) & sin(lambda_2)\
          & & -sin(lambda_2) &cos(lambda_2)\
          & & & & ddots\
          & & & & & cos(lambda_r) & sin(lambda_r)\
          & & & & & -sin(lambda_r) & cos(lambda_r)\
          & & & & & & & 1\
          & & & & & & & &ddots\
          & & & & & & & & & 1
          end{bmatrix}
          end{align*}



          So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            put ones in the southeast corner of $e^Q$.
            $endgroup$
            – loup blanc
            Jan 10 at 11:04










          • $begingroup$
            @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
            $endgroup$
            – P. Quinton
            Jan 10 at 12:42










          • $begingroup$
            Indeed I confirm.
            $endgroup$
            – loup blanc
            Jan 10 at 12:44














          0












          0








          0





          $begingroup$

          The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
          begin{align*}
          Q=begin{bmatrix}
          0 & lambda_1 & \
          -lambda_1 & 0 & \
          & & 0 & lambda_2\
          & & -lambda_2 &0\
          & & & & ddots\
          & & & & & 0 & lambda_r\
          & & & & & -lambda_r & 0\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}
          end{align*}

          where I don't put all the $0$s for visibility's sake.



          The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
          begin{align*}
          e^A = sum_{n=0}^infty frac{1}{n!} A^n
          end{align*}



          and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
          begin{align*}
          Q^{2k} &= begin{bmatrix}
          (-1)^klambda_1^{2k} & & \
          & (-1)^klambda_1^{2k} & \
          & & (-1)^klambda_2^{2k} & \
          & & & (-1)^klambda_2^{2k}\
          & & & & ddots\
          & & & & & (-1)^klambda_r^{2k}\
          & & & & & & (-1)^klambda_r^{2k}\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}\
          Q^{2k+1} &=begin{bmatrix}
          0 & (-1)^klambda_1^{2k+1} & \
          -(-1)^klambda_1^{2k+1} & 0 & \
          & & ddots\
          & & & 0 & (-1)^klambda_r^{2k+1}\
          & & & -(-1)^klambda_r^{2k+1} & 0\
          & & & & & 0\
          & & & & & &ddots\
          & & & & & & & 0
          end{bmatrix}
          end{align*}

          For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.



          We had
          begin{align*}
          e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
          &= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
          &= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
          end{align*}

          and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
          begin{align*}
          e^A = U e^Q U^dagger
          end{align*}

          with
          begin{align*}
          e^Q = begin{bmatrix}
          cos(lambda_1) & sin(lambda_1) & \
          -sin(lambda_1) & cos(lambda_1) & \
          & & cos(lambda_2) & sin(lambda_2)\
          & & -sin(lambda_2) &cos(lambda_2)\
          & & & & ddots\
          & & & & & cos(lambda_r) & sin(lambda_r)\
          & & & & & -sin(lambda_r) & cos(lambda_r)\
          & & & & & & & 1\
          & & & & & & & &ddots\
          & & & & & & & & & 1
          end{bmatrix}
          end{align*}



          So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.






          share|cite|improve this answer











          $endgroup$



          The spectral decomposition of any skew-symmetric matrix $A$ is given by $A=U Q U^dagger$ where $U$ is unitary and
          begin{align*}
          Q=begin{bmatrix}
          0 & lambda_1 & \
          -lambda_1 & 0 & \
          & & 0 & lambda_2\
          & & -lambda_2 &0\
          & & & & ddots\
          & & & & & 0 & lambda_r\
          & & & & & -lambda_r & 0\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}
          end{align*}

          where I don't put all the $0$s for visibility's sake.



          The exponential of a matrix is defined as the extension of the tailor expansion (up to convergence matter you will need to take care of), hence
          begin{align*}
          e^A = sum_{n=0}^infty frac{1}{n!} A^n
          end{align*}



          and since $U$ is unitary, $A^n = U Q U^dagger dots U Q U^dagger=U Q^n U^dagger$ so we aim to get an expression for $Q^n$, this is not trivial but the right way to go is to compute it for several $n$ and try to see a pattern and then prove the pattern is right. It is easy to prove by induction that for any $kinmathbb N$
          begin{align*}
          Q^{2k} &= begin{bmatrix}
          (-1)^klambda_1^{2k} & & \
          & (-1)^klambda_1^{2k} & \
          & & (-1)^klambda_2^{2k} & \
          & & & (-1)^klambda_2^{2k}\
          & & & & ddots\
          & & & & & (-1)^klambda_r^{2k}\
          & & & & & & (-1)^klambda_r^{2k}\
          & & & & & & & 0\
          & & & & & & & &ddots\
          & & & & & & & & & 0
          end{bmatrix}\
          Q^{2k+1} &=begin{bmatrix}
          0 & (-1)^klambda_1^{2k+1} & \
          -(-1)^klambda_1^{2k+1} & 0 & \
          & & ddots\
          & & & 0 & (-1)^klambda_r^{2k+1}\
          & & & -(-1)^klambda_r^{2k+1} & 0\
          & & & & & 0\
          & & & & & &ddots\
          & & & & & & & 0
          end{bmatrix}
          end{align*}

          For this proof the base case would be $Q^0=I$ and $Q$ then you do induction on $k$.



          We had
          begin{align*}
          e^A &= sum_{n=0}^infty frac{1}{n!} A^n\
          &= sum_{n=0}^infty frac{1}{n!} U Q^n U^dagger\
          &= U left( sum_{n=0}^infty frac{1}{n!} Q^n right) U^dagger
          end{align*}

          and by plugin in the $Q^n$ we had, we get that the diagonal terms will be of the form $sum_{k=0}^infty frac{1}{(2k)!} (-1)^k lambda_p^{2k}=cos(lambda_p)$ and the other elements are of the form $pm sum_{k=0}^infty frac{1}{(2k+1)!} (-1)^k lambda_p^{2k+1}=pm sin(lambda_p)$ hence
          begin{align*}
          e^A = U e^Q U^dagger
          end{align*}

          with
          begin{align*}
          e^Q = begin{bmatrix}
          cos(lambda_1) & sin(lambda_1) & \
          -sin(lambda_1) & cos(lambda_1) & \
          & & cos(lambda_2) & sin(lambda_2)\
          & & -sin(lambda_2) &cos(lambda_2)\
          & & & & ddots\
          & & & & & cos(lambda_r) & sin(lambda_r)\
          & & & & & -sin(lambda_r) & cos(lambda_r)\
          & & & & & & & 1\
          & & & & & & & &ddots\
          & & & & & & & & & 1
          end{bmatrix}
          end{align*}



          So an algorithmic way to find the exponential of your matrix is finding the spectral decomposition and then applying the last formula.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 10 at 12:41

























          answered Jan 9 at 12:31









          P. QuintonP. Quinton

          2,0001214




          2,0001214












          • $begingroup$
            put ones in the southeast corner of $e^Q$.
            $endgroup$
            – loup blanc
            Jan 10 at 11:04










          • $begingroup$
            @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
            $endgroup$
            – P. Quinton
            Jan 10 at 12:42










          • $begingroup$
            Indeed I confirm.
            $endgroup$
            – loup blanc
            Jan 10 at 12:44


















          • $begingroup$
            put ones in the southeast corner of $e^Q$.
            $endgroup$
            – loup blanc
            Jan 10 at 11:04










          • $begingroup$
            @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
            $endgroup$
            – P. Quinton
            Jan 10 at 12:42










          • $begingroup$
            Indeed I confirm.
            $endgroup$
            – loup blanc
            Jan 10 at 12:44
















          $begingroup$
          put ones in the southeast corner of $e^Q$.
          $endgroup$
          – loup blanc
          Jan 10 at 11:04




          $begingroup$
          put ones in the southeast corner of $e^Q$.
          $endgroup$
          – loup blanc
          Jan 10 at 11:04












          $begingroup$
          @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
          $endgroup$
          – P. Quinton
          Jan 10 at 12:42




          $begingroup$
          @loupblanc thanks, can you confirm that this comes from the fact that $Q^0=I$ ?
          $endgroup$
          – P. Quinton
          Jan 10 at 12:42












          $begingroup$
          Indeed I confirm.
          $endgroup$
          – loup blanc
          Jan 10 at 12:44




          $begingroup$
          Indeed I confirm.
          $endgroup$
          – loup blanc
          Jan 10 at 12:44


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067307%2fthe-exponential-of-a-skew-symmetric-matrix-in-any-dimension%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Probability when a professor distributes a quiz and homework assignment to a class of n students.

          Aardman Animations

          Are they similar matrix