Heads and tails with unlimited capital
$begingroup$
Let $ S_{n} $ be the sum of won money by player 1 until moment $ n $
He gets 1 if he wins and loses 1 if he loses
Let $ X = infleft{ n : S_{n} = 1right} $
We assume that coin is asymetric and player 1 wins with probability $ p neq frac{1}{2}$
Calculate $ EX $.
Any hints or solutions would be appreciated
probability martingales stopping-times
$endgroup$
add a comment |
$begingroup$
Let $ S_{n} $ be the sum of won money by player 1 until moment $ n $
He gets 1 if he wins and loses 1 if he loses
Let $ X = infleft{ n : S_{n} = 1right} $
We assume that coin is asymetric and player 1 wins with probability $ p neq frac{1}{2}$
Calculate $ EX $.
Any hints or solutions would be appreciated
probability martingales stopping-times
$endgroup$
add a comment |
$begingroup$
Let $ S_{n} $ be the sum of won money by player 1 until moment $ n $
He gets 1 if he wins and loses 1 if he loses
Let $ X = infleft{ n : S_{n} = 1right} $
We assume that coin is asymetric and player 1 wins with probability $ p neq frac{1}{2}$
Calculate $ EX $.
Any hints or solutions would be appreciated
probability martingales stopping-times
$endgroup$
Let $ S_{n} $ be the sum of won money by player 1 until moment $ n $
He gets 1 if he wins and loses 1 if he loses
Let $ X = infleft{ n : S_{n} = 1right} $
We assume that coin is asymetric and player 1 wins with probability $ p neq frac{1}{2}$
Calculate $ EX $.
Any hints or solutions would be appreciated
probability martingales stopping-times
probability martingales stopping-times
asked Jan 9 at 10:27
PabloPablo
1456
1456
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $n=0,1,2,dots$:$$Pleft(X=2n+1right)=C_{n}p^{n+1}left(1-pright)^{n}$$
where $C_n$ denotes the $n$-th Catalan number.
So denoting $r:=p(1-p)$ we find:$$mathbb{E}X=psum_{n=0}^{infty}left(2n+1right)C_{n}r^{n}$$
Setting $cleft(xright):=sum_{n=0}^{infty}C_{n}x^{n}$ we find:
$$mathbb{E}X=pleft(2c'left(rright)r+cleft(rright)right)$$
Here: $$cleft(xright)=frac{1-sqrt{1-4x}}{2x}=frac{2}{1+sqrt{1-4x}}$$ as you can find at the linked page.
There might be a more simple way to find $mathbb EX$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067299%2fheads-and-tails-with-unlimited-capital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $n=0,1,2,dots$:$$Pleft(X=2n+1right)=C_{n}p^{n+1}left(1-pright)^{n}$$
where $C_n$ denotes the $n$-th Catalan number.
So denoting $r:=p(1-p)$ we find:$$mathbb{E}X=psum_{n=0}^{infty}left(2n+1right)C_{n}r^{n}$$
Setting $cleft(xright):=sum_{n=0}^{infty}C_{n}x^{n}$ we find:
$$mathbb{E}X=pleft(2c'left(rright)r+cleft(rright)right)$$
Here: $$cleft(xright)=frac{1-sqrt{1-4x}}{2x}=frac{2}{1+sqrt{1-4x}}$$ as you can find at the linked page.
There might be a more simple way to find $mathbb EX$.
$endgroup$
add a comment |
$begingroup$
For $n=0,1,2,dots$:$$Pleft(X=2n+1right)=C_{n}p^{n+1}left(1-pright)^{n}$$
where $C_n$ denotes the $n$-th Catalan number.
So denoting $r:=p(1-p)$ we find:$$mathbb{E}X=psum_{n=0}^{infty}left(2n+1right)C_{n}r^{n}$$
Setting $cleft(xright):=sum_{n=0}^{infty}C_{n}x^{n}$ we find:
$$mathbb{E}X=pleft(2c'left(rright)r+cleft(rright)right)$$
Here: $$cleft(xright)=frac{1-sqrt{1-4x}}{2x}=frac{2}{1+sqrt{1-4x}}$$ as you can find at the linked page.
There might be a more simple way to find $mathbb EX$.
$endgroup$
add a comment |
$begingroup$
For $n=0,1,2,dots$:$$Pleft(X=2n+1right)=C_{n}p^{n+1}left(1-pright)^{n}$$
where $C_n$ denotes the $n$-th Catalan number.
So denoting $r:=p(1-p)$ we find:$$mathbb{E}X=psum_{n=0}^{infty}left(2n+1right)C_{n}r^{n}$$
Setting $cleft(xright):=sum_{n=0}^{infty}C_{n}x^{n}$ we find:
$$mathbb{E}X=pleft(2c'left(rright)r+cleft(rright)right)$$
Here: $$cleft(xright)=frac{1-sqrt{1-4x}}{2x}=frac{2}{1+sqrt{1-4x}}$$ as you can find at the linked page.
There might be a more simple way to find $mathbb EX$.
$endgroup$
For $n=0,1,2,dots$:$$Pleft(X=2n+1right)=C_{n}p^{n+1}left(1-pright)^{n}$$
where $C_n$ denotes the $n$-th Catalan number.
So denoting $r:=p(1-p)$ we find:$$mathbb{E}X=psum_{n=0}^{infty}left(2n+1right)C_{n}r^{n}$$
Setting $cleft(xright):=sum_{n=0}^{infty}C_{n}x^{n}$ we find:
$$mathbb{E}X=pleft(2c'left(rright)r+cleft(rright)right)$$
Here: $$cleft(xright)=frac{1-sqrt{1-4x}}{2x}=frac{2}{1+sqrt{1-4x}}$$ as you can find at the linked page.
There might be a more simple way to find $mathbb EX$.
edited Jan 9 at 11:33
answered Jan 9 at 11:23
drhabdrhab
104k545136
104k545136
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067299%2fheads-and-tails-with-unlimited-capital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown