How to prove that the Haar system is orthonormal?












0












$begingroup$


Haar wavelets are defined as:



$$
psi_{0,0}(t) =
begin{cases}
1, text{ for } 0<t< 1/2\
-1, text{ for } 1/2<t<1 \
0, text{ otherwise }
end{cases}
$$

Where mother wavelet is$$psi_{n,k} = 2^{-n/2} psi_{0,0}(2^n t -k).$$
And for $n geq 0$, $0 leq k < 2^n$
$$
{psi_{i,n}psi_{k,l}} = delta_{i,l}delta_{k,n}$$



Show that these wavelets form an orthonormal set:










share|cite|improve this question











$endgroup$












  • $begingroup$
    Any book on wavelet theory has a proof. If there are some steps in the proof that you don't understand we will try to help you.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 11:42










  • $begingroup$
    apologies for my editing mistake previously, but I couldn't find a proof related to my query.
    $endgroup$
    – Geet Kalsulkar
    Jan 9 at 12:04










  • $begingroup$
    Go to statmathbc.wordpress.com, click on Catalog, click on Basic Wavelet Theory and then click on Haarlets. You can download my notes on wavelets.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 12:24
















0












$begingroup$


Haar wavelets are defined as:



$$
psi_{0,0}(t) =
begin{cases}
1, text{ for } 0<t< 1/2\
-1, text{ for } 1/2<t<1 \
0, text{ otherwise }
end{cases}
$$

Where mother wavelet is$$psi_{n,k} = 2^{-n/2} psi_{0,0}(2^n t -k).$$
And for $n geq 0$, $0 leq k < 2^n$
$$
{psi_{i,n}psi_{k,l}} = delta_{i,l}delta_{k,n}$$



Show that these wavelets form an orthonormal set:










share|cite|improve this question











$endgroup$












  • $begingroup$
    Any book on wavelet theory has a proof. If there are some steps in the proof that you don't understand we will try to help you.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 11:42










  • $begingroup$
    apologies for my editing mistake previously, but I couldn't find a proof related to my query.
    $endgroup$
    – Geet Kalsulkar
    Jan 9 at 12:04










  • $begingroup$
    Go to statmathbc.wordpress.com, click on Catalog, click on Basic Wavelet Theory and then click on Haarlets. You can download my notes on wavelets.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 12:24














0












0








0





$begingroup$


Haar wavelets are defined as:



$$
psi_{0,0}(t) =
begin{cases}
1, text{ for } 0<t< 1/2\
-1, text{ for } 1/2<t<1 \
0, text{ otherwise }
end{cases}
$$

Where mother wavelet is$$psi_{n,k} = 2^{-n/2} psi_{0,0}(2^n t -k).$$
And for $n geq 0$, $0 leq k < 2^n$
$$
{psi_{i,n}psi_{k,l}} = delta_{i,l}delta_{k,n}$$



Show that these wavelets form an orthonormal set:










share|cite|improve this question











$endgroup$




Haar wavelets are defined as:



$$
psi_{0,0}(t) =
begin{cases}
1, text{ for } 0<t< 1/2\
-1, text{ for } 1/2<t<1 \
0, text{ otherwise }
end{cases}
$$

Where mother wavelet is$$psi_{n,k} = 2^{-n/2} psi_{0,0}(2^n t -k).$$
And for $n geq 0$, $0 leq k < 2^n$
$$
{psi_{i,n}psi_{k,l}} = delta_{i,l}delta_{k,n}$$



Show that these wavelets form an orthonormal set:







functional-analysis reference-request






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 at 12:01







Geet Kalsulkar

















asked Jan 9 at 11:41









Geet KalsulkarGeet Kalsulkar

33




33












  • $begingroup$
    Any book on wavelet theory has a proof. If there are some steps in the proof that you don't understand we will try to help you.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 11:42










  • $begingroup$
    apologies for my editing mistake previously, but I couldn't find a proof related to my query.
    $endgroup$
    – Geet Kalsulkar
    Jan 9 at 12:04










  • $begingroup$
    Go to statmathbc.wordpress.com, click on Catalog, click on Basic Wavelet Theory and then click on Haarlets. You can download my notes on wavelets.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 12:24


















  • $begingroup$
    Any book on wavelet theory has a proof. If there are some steps in the proof that you don't understand we will try to help you.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 11:42










  • $begingroup$
    apologies for my editing mistake previously, but I couldn't find a proof related to my query.
    $endgroup$
    – Geet Kalsulkar
    Jan 9 at 12:04










  • $begingroup$
    Go to statmathbc.wordpress.com, click on Catalog, click on Basic Wavelet Theory and then click on Haarlets. You can download my notes on wavelets.
    $endgroup$
    – Kavi Rama Murthy
    Jan 9 at 12:24
















$begingroup$
Any book on wavelet theory has a proof. If there are some steps in the proof that you don't understand we will try to help you.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 11:42




$begingroup$
Any book on wavelet theory has a proof. If there are some steps in the proof that you don't understand we will try to help you.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 11:42












$begingroup$
apologies for my editing mistake previously, but I couldn't find a proof related to my query.
$endgroup$
– Geet Kalsulkar
Jan 9 at 12:04




$begingroup$
apologies for my editing mistake previously, but I couldn't find a proof related to my query.
$endgroup$
– Geet Kalsulkar
Jan 9 at 12:04












$begingroup$
Go to statmathbc.wordpress.com, click on Catalog, click on Basic Wavelet Theory and then click on Haarlets. You can download my notes on wavelets.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 12:24




$begingroup$
Go to statmathbc.wordpress.com, click on Catalog, click on Basic Wavelet Theory and then click on Haarlets. You can download my notes on wavelets.
$endgroup$
– Kavi Rama Murthy
Jan 9 at 12:24










2 Answers
2






active

oldest

votes


















0












$begingroup$

We need to show the following $$langle psi_{n,k_1},psi_{n,k_2}rangle=0\langle psi_{n_1,k},psi_{n_2,k}rangle=0\langle psi_{n_1,k_1},psi_{n_2,k_2}rangle=0\langle psi_{n,k},psi_{n,k}rangle=1$$when $n_1ne n_2$ and $k_1ne k_2$ and $$langle f,grangle=int_Df(x)g^*(x)dx$$



(1) for $k_1ne k_2$



$$langle psi_{n,k_1},psi_{n,k_2}rangle{=int_{Bbb R}2^{-n}psi_{0,0}(2^nx-k_1)psi_{0,0}(2^nx-k_2)dx\=2^{-2n}int_{Bbb R}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{(k_1,k_1+1)cap(k_2,k_2+1)}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{emptyset}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=0}$$



(2) for $n_1ne n_2$ withput loss of generality assume $n_1>n_2$. Therefore$$langle psi_{n_1,k},psi_{n_2,k}rangle{=int_{Bbb R}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx\=int_{({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx}$$note that for $kne 0$ $${k+1over 2^{n_1}}le {kover 2^{n_2}}$$and therefore $$({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})= emptyset$$This important result says that $langle psi_{n_1,k},psi_{n_2,k}rangle= 0$ whenever $kne 0$. In the case $k=0$ we obtain $$langle psi_{n_1,0},psi_{n_2,0}rangle{=int_{(0,{1over 2^{n_1}})cap (0,{1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1over 2^{n_1}}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)psi_{0,0}(2^{n_2-n_1}u)du\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)du=0}$$



(3)



We show that $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx=0$$



proof



Assume $n_2>n_1$. Therefore



$$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx{={1over 2^{n_1}}int_{k_1}^{k_1+1}psi_{0,0}(u-k)psi_{0,0}(2^{n_2-n_1}u-k_2)du}\={1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du-{1over 2^{n_1}}int_{k_1+{1over 2}}^{k_1+1}psi_{0,0}(2^{n_2-n_1}u-k_2)du$$from the other side $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du=0$$ since $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du{={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}}psi_{0,0}(w-k_2)dw\={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}+k_2}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}+k_2}psi_{0,0}(w)dw\=0}$$where the last equality comes from $$int_0^1 psi_{0,0}(x)dx=0$$



(4)



$$langle psi_{n,k},psi_{n,k}rangle{=int_{Bbb R}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}dx\=1}$$which finishes our (long and exhaustive!) proof $blacksquare$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    If the supports are disjoint then of course the $L^2$ inner product is zero. If the supports overlap, the explanation for the orthogonality is as follows. A Haar wavelet has zero integral, or averages to zero. The wavelet with higher frequency (higher $n$) has support in an interval where the lower frequency wavelet is constant. So the inner product is just that constant times the spatial average of the higher frequency wavelet, i.e., zero.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067353%2fhow-to-prove-that-the-haar-system-is-orthonormal%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      We need to show the following $$langle psi_{n,k_1},psi_{n,k_2}rangle=0\langle psi_{n_1,k},psi_{n_2,k}rangle=0\langle psi_{n_1,k_1},psi_{n_2,k_2}rangle=0\langle psi_{n,k},psi_{n,k}rangle=1$$when $n_1ne n_2$ and $k_1ne k_2$ and $$langle f,grangle=int_Df(x)g^*(x)dx$$



      (1) for $k_1ne k_2$



      $$langle psi_{n,k_1},psi_{n,k_2}rangle{=int_{Bbb R}2^{-n}psi_{0,0}(2^nx-k_1)psi_{0,0}(2^nx-k_2)dx\=2^{-2n}int_{Bbb R}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{(k_1,k_1+1)cap(k_2,k_2+1)}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{emptyset}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=0}$$



      (2) for $n_1ne n_2$ withput loss of generality assume $n_1>n_2$. Therefore$$langle psi_{n_1,k},psi_{n_2,k}rangle{=int_{Bbb R}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx\=int_{({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx}$$note that for $kne 0$ $${k+1over 2^{n_1}}le {kover 2^{n_2}}$$and therefore $$({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})= emptyset$$This important result says that $langle psi_{n_1,k},psi_{n_2,k}rangle= 0$ whenever $kne 0$. In the case $k=0$ we obtain $$langle psi_{n_1,0},psi_{n_2,0}rangle{=int_{(0,{1over 2^{n_1}})cap (0,{1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1over 2^{n_1}}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)psi_{0,0}(2^{n_2-n_1}u)du\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)du=0}$$



      (3)



      We show that $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx=0$$



      proof



      Assume $n_2>n_1$. Therefore



      $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx{={1over 2^{n_1}}int_{k_1}^{k_1+1}psi_{0,0}(u-k)psi_{0,0}(2^{n_2-n_1}u-k_2)du}\={1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du-{1over 2^{n_1}}int_{k_1+{1over 2}}^{k_1+1}psi_{0,0}(2^{n_2-n_1}u-k_2)du$$from the other side $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du=0$$ since $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du{={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}}psi_{0,0}(w-k_2)dw\={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}+k_2}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}+k_2}psi_{0,0}(w)dw\=0}$$where the last equality comes from $$int_0^1 psi_{0,0}(x)dx=0$$



      (4)



      $$langle psi_{n,k},psi_{n,k}rangle{=int_{Bbb R}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}dx\=1}$$which finishes our (long and exhaustive!) proof $blacksquare$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        We need to show the following $$langle psi_{n,k_1},psi_{n,k_2}rangle=0\langle psi_{n_1,k},psi_{n_2,k}rangle=0\langle psi_{n_1,k_1},psi_{n_2,k_2}rangle=0\langle psi_{n,k},psi_{n,k}rangle=1$$when $n_1ne n_2$ and $k_1ne k_2$ and $$langle f,grangle=int_Df(x)g^*(x)dx$$



        (1) for $k_1ne k_2$



        $$langle psi_{n,k_1},psi_{n,k_2}rangle{=int_{Bbb R}2^{-n}psi_{0,0}(2^nx-k_1)psi_{0,0}(2^nx-k_2)dx\=2^{-2n}int_{Bbb R}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{(k_1,k_1+1)cap(k_2,k_2+1)}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{emptyset}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=0}$$



        (2) for $n_1ne n_2$ withput loss of generality assume $n_1>n_2$. Therefore$$langle psi_{n_1,k},psi_{n_2,k}rangle{=int_{Bbb R}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx\=int_{({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx}$$note that for $kne 0$ $${k+1over 2^{n_1}}le {kover 2^{n_2}}$$and therefore $$({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})= emptyset$$This important result says that $langle psi_{n_1,k},psi_{n_2,k}rangle= 0$ whenever $kne 0$. In the case $k=0$ we obtain $$langle psi_{n_1,0},psi_{n_2,0}rangle{=int_{(0,{1over 2^{n_1}})cap (0,{1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1over 2^{n_1}}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)psi_{0,0}(2^{n_2-n_1}u)du\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)du=0}$$



        (3)



        We show that $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx=0$$



        proof



        Assume $n_2>n_1$. Therefore



        $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx{={1over 2^{n_1}}int_{k_1}^{k_1+1}psi_{0,0}(u-k)psi_{0,0}(2^{n_2-n_1}u-k_2)du}\={1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du-{1over 2^{n_1}}int_{k_1+{1over 2}}^{k_1+1}psi_{0,0}(2^{n_2-n_1}u-k_2)du$$from the other side $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du=0$$ since $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du{={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}}psi_{0,0}(w-k_2)dw\={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}+k_2}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}+k_2}psi_{0,0}(w)dw\=0}$$where the last equality comes from $$int_0^1 psi_{0,0}(x)dx=0$$



        (4)



        $$langle psi_{n,k},psi_{n,k}rangle{=int_{Bbb R}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}dx\=1}$$which finishes our (long and exhaustive!) proof $blacksquare$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          We need to show the following $$langle psi_{n,k_1},psi_{n,k_2}rangle=0\langle psi_{n_1,k},psi_{n_2,k}rangle=0\langle psi_{n_1,k_1},psi_{n_2,k_2}rangle=0\langle psi_{n,k},psi_{n,k}rangle=1$$when $n_1ne n_2$ and $k_1ne k_2$ and $$langle f,grangle=int_Df(x)g^*(x)dx$$



          (1) for $k_1ne k_2$



          $$langle psi_{n,k_1},psi_{n,k_2}rangle{=int_{Bbb R}2^{-n}psi_{0,0}(2^nx-k_1)psi_{0,0}(2^nx-k_2)dx\=2^{-2n}int_{Bbb R}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{(k_1,k_1+1)cap(k_2,k_2+1)}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{emptyset}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=0}$$



          (2) for $n_1ne n_2$ withput loss of generality assume $n_1>n_2$. Therefore$$langle psi_{n_1,k},psi_{n_2,k}rangle{=int_{Bbb R}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx\=int_{({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx}$$note that for $kne 0$ $${k+1over 2^{n_1}}le {kover 2^{n_2}}$$and therefore $$({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})= emptyset$$This important result says that $langle psi_{n_1,k},psi_{n_2,k}rangle= 0$ whenever $kne 0$. In the case $k=0$ we obtain $$langle psi_{n_1,0},psi_{n_2,0}rangle{=int_{(0,{1over 2^{n_1}})cap (0,{1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1over 2^{n_1}}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)psi_{0,0}(2^{n_2-n_1}u)du\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)du=0}$$



          (3)



          We show that $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx=0$$



          proof



          Assume $n_2>n_1$. Therefore



          $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx{={1over 2^{n_1}}int_{k_1}^{k_1+1}psi_{0,0}(u-k)psi_{0,0}(2^{n_2-n_1}u-k_2)du}\={1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du-{1over 2^{n_1}}int_{k_1+{1over 2}}^{k_1+1}psi_{0,0}(2^{n_2-n_1}u-k_2)du$$from the other side $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du=0$$ since $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du{={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}}psi_{0,0}(w-k_2)dw\={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}+k_2}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}+k_2}psi_{0,0}(w)dw\=0}$$where the last equality comes from $$int_0^1 psi_{0,0}(x)dx=0$$



          (4)



          $$langle psi_{n,k},psi_{n,k}rangle{=int_{Bbb R}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}dx\=1}$$which finishes our (long and exhaustive!) proof $blacksquare$






          share|cite|improve this answer









          $endgroup$



          We need to show the following $$langle psi_{n,k_1},psi_{n,k_2}rangle=0\langle psi_{n_1,k},psi_{n_2,k}rangle=0\langle psi_{n_1,k_1},psi_{n_2,k_2}rangle=0\langle psi_{n,k},psi_{n,k}rangle=1$$when $n_1ne n_2$ and $k_1ne k_2$ and $$langle f,grangle=int_Df(x)g^*(x)dx$$



          (1) for $k_1ne k_2$



          $$langle psi_{n,k_1},psi_{n,k_2}rangle{=int_{Bbb R}2^{-n}psi_{0,0}(2^nx-k_1)psi_{0,0}(2^nx-k_2)dx\=2^{-2n}int_{Bbb R}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{(k_1,k_1+1)cap(k_2,k_2+1)}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=2^{-2n}int_{emptyset}psi_{0,0}(u-k_1)psi_{0,0}(u-k_2)du\=0}$$



          (2) for $n_1ne n_2$ withput loss of generality assume $n_1>n_2$. Therefore$$langle psi_{n_1,k},psi_{n_2,k}rangle{=int_{Bbb R}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx\=int_{({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x-k)psi_{0,0}(2^{n_2}x-k)dx}$$note that for $kne 0$ $${k+1over 2^{n_1}}le {kover 2^{n_2}}$$and therefore $$({kover 2^{n_1}},{k+1over 2^{n_1}})cap ({kover 2^{n_2}},{k+1over 2^{n_2}})= emptyset$$This important result says that $langle psi_{n_1,k},psi_{n_2,k}rangle= 0$ whenever $kne 0$. In the case $k=0$ we obtain $$langle psi_{n_1,0},psi_{n_2,0}rangle{=int_{(0,{1over 2^{n_1}})cap (0,{1over 2^{n_2}})}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1over 2^{n_1}}2^{-{n_1+n_2over 2}}psi_{0,0}(2^{n_1}x)psi_{0,0}(2^{n_2}x)dx\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)psi_{0,0}(2^{n_2-n_1}u)du\=int_0^{1}2^{-{3n_1+n_2over 2}}psi_{0,0}(u)du=0}$$



          (3)



          We show that $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx=0$$



          proof



          Assume $n_2>n_1$. Therefore



          $$int_{Bbb R}psi_{0,0}(2^{n_1}x-k_1)psi_{0,0}(2^{n_2}x-k_2)dx{={1over 2^{n_1}}int_{k_1}^{k_1+1}psi_{0,0}(u-k)psi_{0,0}(2^{n_2-n_1}u-k_2)du}\={1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du-{1over 2^{n_1}}int_{k_1+{1over 2}}^{k_1+1}psi_{0,0}(2^{n_2-n_1}u-k_2)du$$from the other side $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du=0$$ since $${1over 2^{n_1}}int_{k_1}^{k_1+{1over 2}}psi_{0,0}(2^{n_2-n_1}u-k_2)du{={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}}psi_{0,0}(w-k_2)dw\={1over 2^{n_2}}int_{k_1cdot 2^{n_2-n_1}+k_2}^{left(k_1+{1over 2}right)cdot 2^{n_2-n_1}+k_2}psi_{0,0}(w)dw\=0}$$where the last equality comes from $$int_0^1 psi_{0,0}(x)dx=0$$



          (4)



          $$langle psi_{n,k},psi_{n,k}rangle{=int_{Bbb R}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}psi_{0,0}^2(2^nx-k)dx\=int_{kover 2^n}^{k+1over 2^n}2^{-n}dx\=1}$$which finishes our (long and exhaustive!) proof $blacksquare$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 9 at 13:31









          Mostafa AyazMostafa Ayaz

          18.1k31040




          18.1k31040























              0












              $begingroup$

              If the supports are disjoint then of course the $L^2$ inner product is zero. If the supports overlap, the explanation for the orthogonality is as follows. A Haar wavelet has zero integral, or averages to zero. The wavelet with higher frequency (higher $n$) has support in an interval where the lower frequency wavelet is constant. So the inner product is just that constant times the spatial average of the higher frequency wavelet, i.e., zero.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                If the supports are disjoint then of course the $L^2$ inner product is zero. If the supports overlap, the explanation for the orthogonality is as follows. A Haar wavelet has zero integral, or averages to zero. The wavelet with higher frequency (higher $n$) has support in an interval where the lower frequency wavelet is constant. So the inner product is just that constant times the spatial average of the higher frequency wavelet, i.e., zero.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  If the supports are disjoint then of course the $L^2$ inner product is zero. If the supports overlap, the explanation for the orthogonality is as follows. A Haar wavelet has zero integral, or averages to zero. The wavelet with higher frequency (higher $n$) has support in an interval where the lower frequency wavelet is constant. So the inner product is just that constant times the spatial average of the higher frequency wavelet, i.e., zero.






                  share|cite|improve this answer









                  $endgroup$



                  If the supports are disjoint then of course the $L^2$ inner product is zero. If the supports overlap, the explanation for the orthogonality is as follows. A Haar wavelet has zero integral, or averages to zero. The wavelet with higher frequency (higher $n$) has support in an interval where the lower frequency wavelet is constant. So the inner product is just that constant times the spatial average of the higher frequency wavelet, i.e., zero.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 9 at 12:21









                  Abdelmalek AbdesselamAbdelmalek Abdesselam

                  869312




                  869312






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067353%2fhow-to-prove-that-the-haar-system-is-orthonormal%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Probability when a professor distributes a quiz and homework assignment to a class of n students.

                      Aardman Animations

                      Are they similar matrix