Finding the $n^{text{th}}$ term
$begingroup$
I have the following sequence:
$$1, 2 cos(x),~ 1+2 cos(2x),~ 2 cos(x)+2 cos(3x)….$$
I need to find the $n^{text{th}}$ term, considering the $1^{st}$ term as $1$, $2^{nd}$ as $2 cos(x)$ and so on.
We can represent it by a recurrence function as:
$$f(n) = f(n-2) + 2cos((n-1) x), f(1) = 1, f(2) = 2cos(x)$$
So what is the non-recursive version of the function, or how to approach to find one?
sequences-and-series trigonometry recurrence-relations
$endgroup$
add a comment |
$begingroup$
I have the following sequence:
$$1, 2 cos(x),~ 1+2 cos(2x),~ 2 cos(x)+2 cos(3x)….$$
I need to find the $n^{text{th}}$ term, considering the $1^{st}$ term as $1$, $2^{nd}$ as $2 cos(x)$ and so on.
We can represent it by a recurrence function as:
$$f(n) = f(n-2) + 2cos((n-1) x), f(1) = 1, f(2) = 2cos(x)$$
So what is the non-recursive version of the function, or how to approach to find one?
sequences-and-series trigonometry recurrence-relations
$endgroup$
add a comment |
$begingroup$
I have the following sequence:
$$1, 2 cos(x),~ 1+2 cos(2x),~ 2 cos(x)+2 cos(3x)….$$
I need to find the $n^{text{th}}$ term, considering the $1^{st}$ term as $1$, $2^{nd}$ as $2 cos(x)$ and so on.
We can represent it by a recurrence function as:
$$f(n) = f(n-2) + 2cos((n-1) x), f(1) = 1, f(2) = 2cos(x)$$
So what is the non-recursive version of the function, or how to approach to find one?
sequences-and-series trigonometry recurrence-relations
$endgroup$
I have the following sequence:
$$1, 2 cos(x),~ 1+2 cos(2x),~ 2 cos(x)+2 cos(3x)….$$
I need to find the $n^{text{th}}$ term, considering the $1^{st}$ term as $1$, $2^{nd}$ as $2 cos(x)$ and so on.
We can represent it by a recurrence function as:
$$f(n) = f(n-2) + 2cos((n-1) x), f(1) = 1, f(2) = 2cos(x)$$
So what is the non-recursive version of the function, or how to approach to find one?
sequences-and-series trigonometry recurrence-relations
sequences-and-series trigonometry recurrence-relations
edited Jan 9 at 11:15
Larry
2,55031131
2,55031131
asked Jan 9 at 10:51
ash patelash patel
83
83
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For odd $n=2k+1$, we have
$$
f_n = f_1+sum_{j=1}^{k}left( f_{2j+1} - f_{2j-1}right)=1+2sum_{j=1}^k cos (2jx).
$$ For even $n=2k$, we have
$$
f_n = f_2+sum_{j=2}^{k}left( f_{2j} - f_{2j-2}right)=2sum_{j=1}^k cos left((2j-1)xright).
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Try to solve
$$
Z_n = Z_{n-2}+2e^{i(n-1)x}
$$
here $Z_n = Z_n^h+Z_n^p$ and
$$
Z_n^h-Z_{n-2}^h=0
$$
gives
$$
Z_n^h = C_1+C_2(-1)^n
$$
and
$$
Z_n^p-Z_{n-2}^p = 2lambda^n
$$
gives
$$
Z_n^p = frac{lambda ^{n+2} left((lambda -1) (-1)^{2 n+1}+lambda +1right)}{lambda ^2-1}
$$
After that
$$
f_n = Re(Z_n)
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067316%2ffinding-the-n-textth-term%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For odd $n=2k+1$, we have
$$
f_n = f_1+sum_{j=1}^{k}left( f_{2j+1} - f_{2j-1}right)=1+2sum_{j=1}^k cos (2jx).
$$ For even $n=2k$, we have
$$
f_n = f_2+sum_{j=2}^{k}left( f_{2j} - f_{2j-2}right)=2sum_{j=1}^k cos left((2j-1)xright).
$$
$endgroup$
add a comment |
$begingroup$
For odd $n=2k+1$, we have
$$
f_n = f_1+sum_{j=1}^{k}left( f_{2j+1} - f_{2j-1}right)=1+2sum_{j=1}^k cos (2jx).
$$ For even $n=2k$, we have
$$
f_n = f_2+sum_{j=2}^{k}left( f_{2j} - f_{2j-2}right)=2sum_{j=1}^k cos left((2j-1)xright).
$$
$endgroup$
add a comment |
$begingroup$
For odd $n=2k+1$, we have
$$
f_n = f_1+sum_{j=1}^{k}left( f_{2j+1} - f_{2j-1}right)=1+2sum_{j=1}^k cos (2jx).
$$ For even $n=2k$, we have
$$
f_n = f_2+sum_{j=2}^{k}left( f_{2j} - f_{2j-2}right)=2sum_{j=1}^k cos left((2j-1)xright).
$$
$endgroup$
For odd $n=2k+1$, we have
$$
f_n = f_1+sum_{j=1}^{k}left( f_{2j+1} - f_{2j-1}right)=1+2sum_{j=1}^k cos (2jx).
$$ For even $n=2k$, we have
$$
f_n = f_2+sum_{j=2}^{k}left( f_{2j} - f_{2j-2}right)=2sum_{j=1}^k cos left((2j-1)xright).
$$
answered Jan 9 at 11:11
SongSong
18.6k21651
18.6k21651
add a comment |
add a comment |
$begingroup$
Hint.
Try to solve
$$
Z_n = Z_{n-2}+2e^{i(n-1)x}
$$
here $Z_n = Z_n^h+Z_n^p$ and
$$
Z_n^h-Z_{n-2}^h=0
$$
gives
$$
Z_n^h = C_1+C_2(-1)^n
$$
and
$$
Z_n^p-Z_{n-2}^p = 2lambda^n
$$
gives
$$
Z_n^p = frac{lambda ^{n+2} left((lambda -1) (-1)^{2 n+1}+lambda +1right)}{lambda ^2-1}
$$
After that
$$
f_n = Re(Z_n)
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Try to solve
$$
Z_n = Z_{n-2}+2e^{i(n-1)x}
$$
here $Z_n = Z_n^h+Z_n^p$ and
$$
Z_n^h-Z_{n-2}^h=0
$$
gives
$$
Z_n^h = C_1+C_2(-1)^n
$$
and
$$
Z_n^p-Z_{n-2}^p = 2lambda^n
$$
gives
$$
Z_n^p = frac{lambda ^{n+2} left((lambda -1) (-1)^{2 n+1}+lambda +1right)}{lambda ^2-1}
$$
After that
$$
f_n = Re(Z_n)
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Try to solve
$$
Z_n = Z_{n-2}+2e^{i(n-1)x}
$$
here $Z_n = Z_n^h+Z_n^p$ and
$$
Z_n^h-Z_{n-2}^h=0
$$
gives
$$
Z_n^h = C_1+C_2(-1)^n
$$
and
$$
Z_n^p-Z_{n-2}^p = 2lambda^n
$$
gives
$$
Z_n^p = frac{lambda ^{n+2} left((lambda -1) (-1)^{2 n+1}+lambda +1right)}{lambda ^2-1}
$$
After that
$$
f_n = Re(Z_n)
$$
$endgroup$
Hint.
Try to solve
$$
Z_n = Z_{n-2}+2e^{i(n-1)x}
$$
here $Z_n = Z_n^h+Z_n^p$ and
$$
Z_n^h-Z_{n-2}^h=0
$$
gives
$$
Z_n^h = C_1+C_2(-1)^n
$$
and
$$
Z_n^p-Z_{n-2}^p = 2lambda^n
$$
gives
$$
Z_n^p = frac{lambda ^{n+2} left((lambda -1) (-1)^{2 n+1}+lambda +1right)}{lambda ^2-1}
$$
After that
$$
f_n = Re(Z_n)
$$
edited Jan 9 at 11:30
answered Jan 9 at 11:07
CesareoCesareo
9,9413518
9,9413518
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067316%2ffinding-the-n-textth-term%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown